
http://www.forum.nokia.com
Product number: SDK-01-000-004
September 1999

WML Reference
Version 1.1

© 1999. Nokia Corporation. Nokia is a registered trademark of Nokia Corporation.

WML Reference
Version 1.1

Product number: SDK-01-000-004

Copyright© Nokia Corporation 1999. All rights reserved.

We welcome and consider all comments and suggestions. Please send them to:

Nokia Group Finland
P.O. Box 226,
FIN-00045 NOKIA GROUP

Tel. +358 9 180 71
Fax. +358 9 656 388

Internet mail address:
wap.sw.developer@nokia.com

http://www.forum.nokia.com

This document is part of the Nokia Wireless Application Protocol Toolkit. The contents of this guide
are based on the Wireless Application Protocol Wireless Markup Language Specification Version 1.1
(WAP WML Version16-June-1999).

Reproduction, distribution or transmission of part or all of this documentation in any form without the
prior written permission of Nokia is prohibited.

The content of this documentation may be changed without prior notice.

“Nokia,” the arrows symbol and Nokia’s product names are trademarks of Nokia.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation.

Portions of the Nokia WAP Toolkit contain technology used under license from the World Wide Web
Consortium and are copyrighted by the World Wide Web Consortium (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).

http://www.forum.nokia.com/

i

Contents

Introduction ... 1
Typographical conventions.. 2
Related documents.. 3

Documents included in the Nokia WAP Toolkit .. 3
Other references.. 4

Core WML data types.. 5
Character data ... 5

Length .. 6
Vdata .. 6
Flow, inline and layout... 7
Text .. 7
Href .. 8
Boolean .. 8
Number.. 8
Emphasis.. 9

WML character set ... 9
Reference Processing Model .. 10
Character entities and special characters ... 11
WML syntax.. 12

First steps in WML .. 17
Card and Deck .. 17
Template.. 19
WML and URLs... 19

Fragment anchors.. 20
Relative URLs ... 20
Browser context .. 20

History .. 21

WML elements ... 23
Decks and cards .. 23

Common attributes... 23
Document header.. 24
wml element .. 24
card element... 26
template element ... 29
head element .. 30
access element.. 31
meta element.. 33

WML Reference

ii

Events .. 34
do element.. 35
ontimer event... 38
onenterforward event ... 39
onenterbackward event... 40
onpick event .. 41
onevent element... 42
postfield element ... 43
Card and deck intrinsic events ... 44
Card and deck task override... 44

Tasks .. 46
go task .. 46
prev task... 49
refresh task... 50
noop task.. 50

Variables .. 51
setvar element .. 51
Naming variables... 52
Validating variables ... 53
Restricting variable context.. 53
Setting variables... 53
Substituting variables.. 54
Parsing the variable substitution syntax.. 55

User input.. 55
input element... 56
select element... 61
option element... 64
optgroup element .. 67
fieldset element.. 68

Anchors, images and timers ... 70
anchor element .. 70
a element .. 71
img element.. 72
timer element... 74

Text formatting ... 76
White space.. 76
Emphasis elements .. 76
br element .. 77
p element.. 78
table element.. 80
tr element ... 82
td element .. 83

iii

Examples ... 85
Using variables.. 85
Task shadowing and inter-deck navigation .. 88
Summary of examples... 91

WML document type definition .. 93

WML quick reference .. 99

Glossary... 103

Index... 111

WML Reference

iv

1

Introduction

This guide introduces the Wireless Markup Language (WML). WML is a markup
language based on the Extensible Markup Language (XML) and was developed for
specifying content and user interface for narrowband devices such as cellular
phones and pagers.

WML is designed to work with small, wireless devices that have four
characteristics:

 Small display screens with low resolution. For example, most mobile phones
can only display a few lines of text, and each line can contain only 8–12
characters.

 The input devices have limited capacity, or are designed for a special purpose.
A mobile phone typically has a numeric keypad and a few additional function-
specific keys. More sophisticated devices may have software-programmable
buttons, but not a mouse or other pointing device.

 The computational resources are often limited by a low power CPU, a small
memory and power constraints.

 The network offers low bandwidth and high latency. Devices with 300 b/s to
10 kbit/s network connections and 5-10 second round-trip latency are not
uncommon.

The characteristics of WML can be grouped into four major areas:

 WML offers text and image support, and has a variety of formatting and layout
commands.

 WML cards are grouped into decks. A WML deck is similar to an HTML page
in that it is identified by an URL and is the unit of content transmission.

 WML offers support for managing navigation between cards and decks, and
includes commands for event handling. These can be used for navigating or
executing scripts. WML also supports anchored links, similar to those used in
HTML version 4.

 Parameters can be set for all the WML decks using a state model. Variables can
be used in place of strings and are substituted at runtime. Setting parameters
this way allows network resources to be used more efficiently.

All of the WML information is transmitted in encoded format over the wireless
networks.

WML Reference Introduction

2

Typographical conventions

The following conventions are used in this guide.

Notation Explanation

Courier Text that appears onscreen, program code, file and
directory names, function names. Optional attributes
in WML element syntax.

Courier Bold WML tags and mandatory attributes, Uniform
Resource Locators.

Courier Italic Parameter values (for example, title=NMTOKEN),
variables in commands and other types of specialized
language.

? The specified element can be included zero or one
time inside the described parent element. This
convention is used in the Contained elements section
of the WML element descriptions.

For example, in the description of the WML element,
the contained element
head ?
means that you can use the head element only once
inside the WML element, or that you can leave the head
element out.

+ The specified element must be included at least once
inside the described parent element. This convention
is used in the Contained elements section of the WML
element descriptions.

For example, in the description of the wml element,
the contained element
card +
means that you must include at least one card
element inside the wml element.

* The specified element can be included any number of
times inside the described parent element. This
convention is used in the Contained elements section
of the WML element descriptions.

For example, in the description of the template
element, the contained element
do *
means that you can include the do element any
number of times inside a template element, or that
you can leave the do element out.

Introduction WML Reference

3

Notation Explanation

| Separates alternative items.

For example,

means that the image can be aligned left, right or
center.

The element descriptions have the following standard content:

 Description: This section provides a short description of the element and its use
in WML applications.

 Contained elements: This section lists the elements that can be included in the
current element.

 Syntax: This section explains the attributes of the element.

 Example: This section provides a simple example illustrating how the element
and its attributes are used. The examples have a running numbering.

Related documents

The following documents contain additional information on the Nokia WAP
Toolkit and the Wireless Application Protocol. The web address provided after
each document specifies the Internet location where the document can be obtained.

Documents included in the Nokia WAP Toolkit

 Nokia WAP Toolkit Getting Started

This guide provides basic information on the Nokia WAP Toolkit and the
Wireless Markup Language, and provides instructions on installing and using
the product.

 Nokia WAP Toolkit Developer’s Guide

This guide provides information on the Nokia WAP Toolkit and the Wireless
Markup Language for developers who want to create their own wireless
services on the WAP platform.

 WMLScript Reference

This guide provides reference information on the WMLScript language. It
introduces the WMLScript and its standard libraries.

WML Reference Introduction

4

Other references

 Wireless Markup Language Specification.
WAP Forum, 16-June-1999.
http://www.wapforum.org/

 WMLScript Specification.
WAP Forum, 16-June--1999.
http://www.wapforum.org/

 Wireless Application Environment Specification.
WAP Forum, 16-June-1999.
http://www.wapforum.org/

 Wireless Application Protocol Architecture Specification.
WAP Forum, 16-June-1999.
http://www.wapforum.org/

 Wireless Session Protocol Specification.
WAP Forum, 16-June-1999.
http://www.wapforum.org/

 The Unicode Standard: Version 2.0.
http://www.unicode.org

 Extensible Markup Language (XML).
W3C Proposed Recommendation, 10-February-1998, REC-xml-19980210.
http://www.w3.org/TR/REC-xml

 RFC2045: Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies.
http://www.alternic.net/info/rfcs/2000/rfc2045.txt.html

 RFC2068: Hypertext Transfer Protocol - HTTP/1.1.
http://www.w3.org/Protocols/HTTP/1.1/

draft-ietf-http-v11-spec-rev-03.txt

 RFC2396: Uniform Resource Identifies (URI): Generic Syntax

http://www.wapforum.org/
http://www.wapforum.org/
http://www.wapforum.org/
http://www.wapforum.org/
http://www.wapforum.org/
http://www.unicode.org/
http://www.w3.org/TR/REC-xml
http://www.alternic.net/info/rfcs/2000/rfc2045.txt.html
http://www.w3.org/Protocols/HTTP/1.1/draft-ietf-http-v11-spec-rev-03.txt
http://www.w3.org/Protocols/HTTP/1.1/draft-ietf-http-v11-spec-rev-03.txt

5

Core WML data types

This chapter describes the core data types included in WML, as specified in the
WAP WML Specification Version 1.1. These data types are used in the WML
element descriptions throughout this guide.

Character data

All character data in WML is defined in terms of XML data types. The following
table summarizes the character data types:

Data type Explanation

CDATA Text which may contain numeric or named
characters. CDATA is used only in attribute values.

Examples:
"$(value)"

name="value"

PCDATA Parsed CDATA. Text which may contain numeric
or named characters. This text can also contain
tags. PCDATA is used only in elements.

Example:
Text written <big> IN CAPS </big>.

NMTOKEN A name token, containing any mix of numbers,
letters, and some punctuation characters “.”, “-”,
“_”, and “:”. Note that you can start a name token
with a punctuation character. A name token
cannot be used in variable reference or element
names.

Examples:
"text"

_card1

a.name.token

.a-perfectly-valid.name.token

WML Reference Core WML data types

6

Data type Explanation

id An unique identifier for the element.

Example:
<card id="card1"/>

Length
The %length type may be specified either as an integer representing the number of
screen pixels, or as a percentage of the available horizontal or vertical space. Thus,
the value “50” means fifty pixels. For widths, the value “50%” means half of the
available horizontal space. And for heights, the value “50%” means half of the
available vertical space.

The integer value consists of one or more decimal digits ([0-9]) followed by an
optional percent character (%). The length type is only used in attribute values.

Name Type Usage

%length CDATA [0-9] for pixels or
[0-9] + % for percentage length.

Example [1.]

For example, the values of the hspace and vspace attributes are %length.

Vdata

The %vdata type represents a string that may contain variable references. This type
is only used in attribute values.

Name Type Usage

%vdata CDATA Attribute value possibly containing variable
references.

Example [2.]

<card id="card1" title="$(showme)">

Core WML data types WML Reference

7

Flow, inline and layout

The %flow type represents “card-level” and the %inline type “text-level”
information. In general, %flow is used anywhere general markup can be included.
The %inline type indicates areas where only pure text or variable references are
handled.

Name Type Usage

%layout br Text layout, such as line breaks.

%inline %text

%layout

Indicates areas where only pure text or variable
references are handled.

%flow %inline

img

anchor

a

table

Covers card-level elements, such as text and images.

Example [3.]

The data types %flow and %inline are used for general text that may have
formatting attributes such as italics, underline, and bold.

An emphasized line.

<big>

A big and emphasized line.

</big>

A line with no text formatting.

Text

The %text type can include the following entities:

Name Type Usage

%text #PCDATA

%emph

Indicates text that contains formatting.

Example [4.]

A line with plain text.

A line with strong emphasis.

WML Reference Core WML data types

8

Href

The %href type refers to either a relative or an absolute Uniform Resource
Identifier (URI).

Name Type Usage

%href %vdata URI, URL, or URN designating a hypertext node.
May contain variable references.

Example [5.]

<go href="http://wapforum.org/"/>

<go href="file:///d:\dir\file.wml"/>

<go href="app.wml"/>

The values of intrinsic events are URLs:

<card onenterforward="#card2"/>

The src attribute of the img element is an URL:

Boolean

The %boolean type refers to a logical value of true or false.

Name Type Usage

%boolean true |

false

Logical value of true or false.

Example [6.]

<card newcontext="true"/>

<do optional="true" type="accept"/>

Number

The %number type represents an integer value greater than or equal to zero.

Name Type Usage

%number NMTOKEN A number, from [0–9].

Core WML data types WML Reference

9

Example [7.]

<select tabindex="2"/>

<input name="setvar" size="4" maxlength="20" tabindex="3"/>

Emphasis

The %emph type covers text formatting tags described in the following table.

Name Type Usage

%emph em |

strong |

b |

i |

u |

big |

small

Text formatting, for example italics or underlining.

Example [8.]

An emphasized line.

<big>

A big and emphasized line.

</big>

WML character set

WML is an XML language inheriting the XML document character set. In WML, a
document character set is the set of all logical characters that a document type may
contain, for example the letter ‘T’ and a fixed integer identifying that letter. A
WML or XML document is simply a sequence of these integer tokens, which taken
together form a document.

The document character set for XML and WML is the Universal Character Set of
ISO/IEC-10646. Currently, this character set is identical to Unicode 2.0. For more
details on the character sets, refer to the XML Specification and the ISO10646
Specification.

WML Reference Core WML data types

10

WAP supports the following Unicode subset document character sets:

 UTF-8

UCS Transformation Format 8 is used as a transfer encoding to transmit the
international character set. UTF-8 is a file safe encoding which avoids using
byte values which have special significance during the parsing of pathname
character strings. UTF-8 is an 8-bit encoding of the characters in the UCS.
Some of UTF-8’s benefits:

— It is compatible with 7-bit ASCII, so it does not affect programs that give
special meanings to various ASCII characters

— It is immune to synchronization errors; its encoding rules allow for easy
identification.

— It has enough space to support a large number of character sets.

 ISO-8859-1

The ISO-8859-1 character set is an extension of the ASCII character set and
can be used to represent all western European languages. Also known as ISO
Latin-1, ISO-8859-1 is very similar to the ANSI character set used in
Windows, though the two are not identical. The HTTP protocol presumes the
use of ISO Latin-1 unless another character set is specified. This means that to
represent non-ASCII characters on a WML page, you need to use the
corresponding ISO Latin-1 code.

 UCS-2

UCS-2 is the 2-byte (16-bit) encoding of the Universal Multiple-Octet Coded
Character Set (UCS) defined in ISO 10646. The character code values of UCS-
2 are identical to those of the Unicode character encoding standard published
by the Unicode Consortium.

Reference Processing Model

WML documents may be encoded with any character encoding as defined by the
HTML 4.0 Specification.

Character encoding of a WML document may be converted to another encoding
(or transcoded) to better meet the user agent’s characteristics. However,
transcoding can lead to loss of information and must be avoided when the user
agent supports the document’s original encoding. Unnecessary transcoding must be
avoided when information loss will result. If required, transcoding should be done
before the document is delivered to the user agent.

User agents must determine the character encoding of a WML document according
to the following precedence (listed highest to lowest):

 Based on the “charset” parameter of the “Content-Type” transport header (e.g.
WSP or HTTP).

Core WML data types WML Reference

11

 Based on meta-information placed within the document (e.g., the charset
parameter in an http-equiv meta element).

 Based on the encoding on the XML declaration.

 Based on some other heuristics or user settings. For example, if content type is
text based (i.e., text/vnd.wap.wml), the charset may be assumed to be US-
ASCII; otherwise, the default content encoding can be assumed (i.e., UTF-8).

The WML reference-processing model is as follows. User agents must implement
this processing model, or a model that is indistinguishable from it.

 User agents must correctly map to Unicode all characters in any character
encoding that they recognize, or they must behave as if they did.

 Any processing of entities is done in the document character set.

A given implementation may choose any internal representation that is convenient.

Character entities and special characters
A given character encoding may not be able to express all characters of the
document character set. For such encoding, or when the device characteristics do
not allow users to input some document characters directly, you may use character
entities. Character entities are a character encoding-independent mechanism for
entering any character from the document character set.

WML supports both named and numeric character entities. Note that all numeric
character entities are referenced with respect to the document character set
(Unicode) and not to the current document encoding (charset). This means that the
notation { always refers to the same logical character, independent of the
current character encoding.

WML supports the following character entity formats:

 Named character entities, such as & and <

 Decimal numeric character entities, such as {

 Hexadecimal numeric character entities, such as

The following table illustrates the seven named character entities that are
particularly important in the processing of WML.

Entity Notation Explanation

quot " quotation mark

amp & #38; ampersand

apos ' apostrophe

lt < less than

WML Reference Core WML data types

12

Entity Notation Explanation

gt > greater than

nbsp non-breaking space

shy ­ soft hyphen (discretionary hyphen)

! Note: The semicolon (;) is part of the escape sequence for a special character.

Example [9.]

To include a special character, simply use the escaped notation described in the
above table. For example, the following code includes a less than character (<) in the
escaped form <.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

<card id="Card_1">

<p>

Numerically 5 < 10

</p>

</card>

</wml>

The deck generates the following user interface in the user agent:

Use of special characters.

WML syntax

WML inherits most of its syntactic constructs from XML. For detailed information
on the syntactical issues of XML, refer to the XML Specification.

Entities

WML text can contain numeric or named character entities which specify specific
characters in the document character set. Entities are used to specify characters in
the document character set which must either be escaped in WML or which may be
difficult to enter in a text editor. For example, the ampersand (&) is represented by

Core WML data types WML Reference

13

the named entity &. All entities begin with an ampersand and end with a
semicolon.

WML is an XML language. This implies that the ampersand and less-than
characters must be escaped when they are used in textual data, that is, these
characters may appear in their literal form only when used as markup delimiters,
within a comment, and so on.

Example [10.]

<card id="card1">

<p>

Ampersand = &

Quote = "

Less than = <

</p>

</card>

The deck generates the following user interface in the user agent:

Example of entities.

Tags

A tag is a language element descriptor. A tag describes an element and contains an
element type name and a unique identifier. A tag could also include attributes
describing other properties.

WML consists of content surrounded by formatting tags, each enclosed in a pair of
angle brackets, < and >.

<tag> This starts an element. The start tag can contain attributes.

</tag> This ends an element.

<tag/> This is an empty element, for example
, indicating a line break.

WML Reference Core WML data types

14

Elements

Elements specify all markup and structural information for a WML deck. Elements
may contain a start tag, content, other elements and an end tag. Elements have one
of two structures:

<tag> content </tag>

- or-

<tag/>

Elements containing content and other elements are identified by a start tag <tag>
and an end tag </tag>. An empty-element tag <tag/> identifies elements with no
content.

Attributes

WML attributes specify additional information for an element. Attributes are
always specified in the start tag of an element. For example,

<tag attr="value"/>

Note that attribute names must be lowercase.

WML requires that all attribute values be quoted using either double quotation
marks (") or single quotation marks ('). Single quotation marks can be included
within the attribute value when the value is delimited by double quotation marks
and vice versa. Character entities may be included in an attribute value.

Some attributes are mandatory, and these are emphasized in bold in the element
descriptions and attribute tables later in this guide. For example, the go element
requires the href attribute:

<go href="http://www.acme.com"/>

Comments

WML comments follow the XML commenting style and have the following syntax:

<!-- a comment -->

Comments are intended to be used by the WML author and are not displayed to
the user by the user agent. Note that WML comments cannot be nested.

Variables

Parameters can be set for WML cards and decks using variables. To substitute a
variable into a card or deck, the following syntaxes are used:

$identifier
$(identifier)
$(identifier:conversion)

Core WML data types WML Reference

15

Parentheses are required if white space does not indicate the end of a variable.
Variable syntax has the highest priority in WML, that is, anywhere the variable
syntax is legal, an unescaped ‘$’ character indicates a variable substitution. Variable
references are legal in any PCDATA and in any attribute value identified by the vdata
entity type.

For information on variable conversions, see “Substituting variables” on page 54.

Example [11.]

A sequence of two dollar signs ($$) represents a single dollar sign character.

The WML code could take the following form:

This is a $$ character.

The value is $(amount)$$.

In the user agent, this would be displayed as:

This is a $ character.

The value is 5000$.

Case sensitivity

XML is a case-sensitive language, and WML has inherited this characteristic. No
case folding is performed when parsing a WML deck. This implies that all WML
tags, attributes and contents are case sensitive. In addition, any enumerated
attribute values are case sensitive.

Example [12.]

The following attribute values are all different:

 id="Card1"

 id="card1"

 id="CARD1"

Cdata section

Cdata sections are used to escape blocks of text and are legal in any pcdata section,
for example, inside an element. Cdata sections begin with the string “<! [cdata
[” and end with the string “]]>”. For example:

<![CDATA [This is a test.]]>

Any text inside a cdata section is treated as literal text and will not be parsed for
markup. cdata sections are useful anywhere literal text is convenient.

For more information on cdata sections, refer to the XML Specification.

WML Reference Core WML data types

16

17

First steps in WML

This chapter gives you an overview of the WML language and its most important
elements, illustrated by code examples.

Card and Deck

All WML information is organized into a collection of cards and decks. Cards
specify one or more units of user interaction, for example a choice menu, a screen
of text or a text entry field. Logically, a user navigates through a series of WML
cards, reviews the contents of each, enters information requested, makes choices
and moves on to another card.

Cards are grouped together into decks. A deck is the smallest unit of WML that a
server can send to a user agent.

The following figure illustrates the card and deck metaphor:

Deck

Card
Card

Card
Card

Card
Card

Card
Card

WML deck and cards.

The first WML example [13.]

Our first WML example introduces a simple WML deck containing two cards.
When the user presses the ACCEPT soft key labeled “Next,” the user agent
navigates to the second card of the deck and displays its content.

WML Reference First steps in WML

18

<?xml version="1.0"?> <!-- 1 -->

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml"> <!-- 2 -->

<wml> <!-- 3 -->

<card id="First_Card"> <!-- 4 -->

<do type="accept" label="Next"> <!-- 5 -->

<go href="#Second_Card"/> <!-- 6 -->

</do> <!-- 7 -->

<p> <!-- 8 -->

Select Next to display the next card. <!-- 9 -->

</p> <!-- 10 -->

</card> <!-- 11 -->

<card id="Second_Card"> <!-- 12 -->

<p> <!-- 13 -->

This card contains the following:... <!-- 14 -->

</p> <!-- 15 -->

</card> <!-- 16 -->

</wml> <!-- 17 -->

The deck generates the following user interface in the user agent:

A deck containing two cards.

The following is a line-by-line explanation of this example:

1 The first two lines define the document prologue that identifies the XML
subset. This prologue must be included at the beginning of every WML deck,
that is, before each <wml> tag..

First steps in WML WML Reference

19

3 The third line defines the header of the WML deck. All WML decks must
begin with a <wml> tag and end with a </wml> tag. For more information, see
“wml element” on page 24.

4 The fourth line of the deck specifies the header of the first card. Like decks,
cards require begin and end tags, for example, <card> and </card>.

Most WML elements allow you to specify attributes. Attributes are entered in
the form attribute=value, where attribute is the attribute name and
value is an alphabetic or numeric value that you specify.

For more information, see “card element” on page 26.

5 The fifth line defines an action, which specifies what the user agent should do
when the user presses a specified function key. The type attribute identifies the
key (ACCEPT) and the label attribute a label name (Next) for the specified
key.

6 The sixth line specifies the action related to the specified key. The href
attribute identifies the target URI destination, for example, the card named
Second_Card.

Template

A WML deck may contain a template that defines deck-level characteristics that
apply to all cards of a deck. In an individual card, you can override these
characteristics by specifying the same characteristics under the same name.

For more information on templates and using them, see “template element” on page
29.

For more information on overriding template tasks in individual cards, see “Card
and deck task override” on page 44.

WML and URLs

The World Wide Web is a network of information and devices, where three areas of
specification ensure widespread interoperability:

 Uniform Resource Locators (URLs) provide a standard for naming any
network resource.

 Standard protocols (for example, HTTP) for transporting information.

 Standard content types (for example, HTML and WML).

WML uses the same reference architecture as HTML and the World Wide Web.
Content is named using URLs and is retrieved over standard protocols that have

WML Reference First steps in WML

20

HTTP semantics, such as Wireless Session Protocol (WSP). URLs and the character
set used to specify URLs are defined in RFC2396.

In WML, URLs are used when specifying navigation (hyperlinking, for example) or
external resources (an image or a script, for example).

Fragment anchors

WML has adopted the HTML way of naming locations within a resource. A WML
fragment anchor is specified by the document URL, followed by a hash mark (#),
followed by a fragment identifier. WML uses fragment anchors to identify
individual WML cards within a WML deck. If no fragment is specified, the URL
names an entire deck, and the deck URL also identifies the first card in a deck.

Example [14.]

The following go element includes an URL referring to another card in the same
deck. In this case the URL includes the fragment identifier (#):

<go href="#Next_Card"/>

For another fragment anchor example, see the simple WML example in “Card and
Deck” on page 17.

Relative URLs

WML has adopted the use of relative URLs, as specified in RFC2396. The base
URL of a WML deck is the URL that identifies the deck.

Example [15.]

The following simple example demonstrates the use of a relative URL. When the
user activates the go task, the user agent navigates to the options directory in the
same domain where the current deck is located.

<wml>

<card>

<do type="options" label="Options">

<go> href="/options/foo.wml"/>
label="menu"

</do>

<!-- rest of the card -->

</card>

</wml>

Browser context

The WML state is stored in the “browser context”. The browser context is used to
manage all parameters and user agent states, including variables, the navigation
history and other implementation-dependent information related to the current
state of the user agent.

First steps in WML WML Reference

21

History

WML includes a simple navigational history model that allows you to efficiently
manage navigating backwards. The user agent history is implemented as a stack of
URLs that represent the navigational path the user traveled to arrive at the current
card. You may perform three operations on the history stack, described in the table
below.

Operation Explanation

Reset The history stack may be reset to a state where it contains only
the current card. For more information, see the discussion on
the newcontext attribute on page 26.

Push A new URL is pushed onto the history stack when you navigate
to a new card.

Pop The current card’s URL (top of stack) is popped when you
navigate backwards.

When you enter a card, the card URL is added to the history stack. This allows you
to navigate back to the previous card in the history by executing a prev task. The
execution of prev pops the current card URL from the history stack.

WML Reference First steps in WML

22

23

WML elements

This chapter provides reference information on WML elements and attributes. The
usage of each element is demonstrated with an example.

Decks and cards

WML data is structured as a collection of cards. A single collection of cards is
referred to as a WML deck. Each card contains structured content and navigation
specifications. Logically, a user navigates through a series of cards, reviews the
contents of each, enters the information requested, makes choices and navigates to
another card or returns to a previously visited card.

The following sections describe the WML “building blocks”: document headers
and deck and card components.

Common attributes

All WML elements have two core attributes, id and class, that can be used for
such tasks as server-side transformations. The id attribute provides an element an
unique name within a single deck. The class attribute affiliates an element with
one or more classes.

Multiple elements can be given the same class name. All elements of a single deck
with a common class name are considered to be part of the same class. Class names
are case sensitive. An element can be part of multiple classes if it has multiple
unique class names listed in its class attribute. Multiple class names within a single
attribute must be separated by white space. Redundant class names as well as
insignificant white space between class names may be removed The WML agent
should ignore this attribute.

All elements containing text may contain the xml:lang attribute. The xml:lang
attribute specifies the natural language of an element or its attributes. The attribute
identifies to the user agent the language used for text, such as an element's content
and attribute values, that may be presented to the user.

WML Reference WML elements

24

Document header

A valid WML deck is a valid XML document and therefore must contain an XML
declaration and a document type declaration. A typical document header contains:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

You can also save the document type declaration in a file, thus allowing for a faster
bytecode translation.

Note the following document identifiers:

 The SGML public identifier is "-//WAPFORUM//DTD WML 1.1//EN".

 The WML media type identifier is:

— In textual form: "text/vnd.wap.wml"

— In tokenized form: "application/vnd.wap.wmlc"

! Note: These types are not yet registered with the IANA and are consequently
experimental media types.

wml element

Description

The wml element defines a deck and encloses all the information and cards in the
deck.

Contained elements

head ?

template ?

card +

Syntax

The xml:lang attribute of the wml element is explained in the following table.

Attribute Explanation

xml:lang=nmtoken This attribute specifies the natural or formal
language in which the document is written. For
information, see "Common attributes" on page
23.

WML elements WML Reference

25

Example [16.]

The following is a deck containing two cards, each represented by a card. After
loading the deck, the user agent displays the first card. If the user activates the do
element, the user agent displays the second card.

The xml:lang attribute specifies that the document is written in US English.

<wml xml:lang="en-us">

<card id="card1" title="Card 1">

<do type="accept">

<go href="#card2"/>

</do>

<p>

Hello world!

This is the first card...

</p>

</card>

<card id="card2" title="Card 2">

<p>

This is the second card.

Goodbye.

</p>

</card>

</wml>

The deck generates the following user interface in the user agent:

A WML deck containing two cards.

WML Reference WML elements

26

card element

Description

A WML deck contains a collection of cards. There are a variety of card types, each
specifying a different mode of user interaction.

The card element is a container for text and input elements that is flexible enough
to allow presentation and layout in a wide variety of devices, with a wide variety of
display and input characteristics. The card element indicates the general layout and
required input fields, while giving considerable freedom for implementing layout
and user input schemes in the user agent. For example, a card can be presented as a
single page on a large-screen device or as a series of smaller pages on a small-screen
device.

A card can contain markup, input fields and elements indicating the structure of
the card. Note that the order of elements in the card is significant. You may use a
card's id as a fragment anchor. See "Fragment anchors" on page 20 for more
information.

Contained elements

onevent *

timer ?

do *

p *

! Note: If a card element contains onevent elements, the onevent elements
must be first. If a card contains a timer element, the timer must follow any
onevent elements and precede any do or p elements.

Syntax

The attributes of the card element are explained in the following table.

Attribute Explanation

title=vdata This attribute specifies advisory information on
the card.

newcontext=boolean If you set this attribute to true, the current
browser context is re-initialized upon entry to
this card and performs the following operations:

 Clears the navigational history state.

 Resets the implementation-specific state to a
well-known value.

WML elements WML Reference

27

Attribute Explanation

newcontext is only performed as part of the go
task.

For an example of the newcontext attribute, see
Example [46.] on page 85.

The default value is false.

ordered=boolean This attribute gives an indication to the user agent
about how the card content is organized. This
indication can be used to organize the content
presentation or to otherwise influence the layout
of the card.

ordered=

"true"

The card is naturally organized as a
linear sequence of field elements,
for example, a set of questions or
fields which are naturally handled
by the user in the order in which
they are specified in the group.
This style is best for short forms in
which no fields are optional. For
example, sending an email message
requires a To: address, a subject
and a message, and they are
logically specified in this order.

ordered=

"false"

The card is a collection of field
elements without a natural order.
This is useful for collections of
fields containing optional or
unordered components or simple
record data where the user updates
individual input fields.

For devices with limited display capabilities, it is
often necessary to insert screen flips or other user
interface transitions between fields. When this is
done, the user agent must choose the right
boundaries between fields. User agents use the
following heuristic for finding the screen flip
location:

fieldset Defines a logical boundary
between fields.

Fields (e.g. input) may be individually displayed.
When this is done, the line of markup (flow)
immediately preceding the field is treated as a

WML Reference WML elements

28

Attribute Explanation

field prompt and displayed with the input
element. The table must be treated differently
than input and select. The user agent must
insert a line break before each table element,
except when it is the first non-whitespace markup
in a card. The user agent must insert a line break
after each table element, excpt when it is the
final element in a card.

onenterforward=href The onenterforward event occurs when the user
navigates into a card using a go task. For more
information, see “onenterforward event” on page
39.

onenterbackward=href The onenterbackward event occurs when the
user navigates into a card using a prev task. For
more information, see “onenterbackward event”
on page 40.

ontimer=href The ontimer event occurs when a timer expires.
For more information, see “ontimer event” on
page 38.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [17.]

The following is an example of a simple card embedded in a WML deck. The card
contains text, which is displayed by the user agent.

When the user navigates to this card, the browser context is re-initialized, meaning
that all variables are cleared and the history stack is emptied.

<wml>

<template>

<do type="accept" name="exit" label="EXIT">

<prev/>

</do>

</template>

<card id="card_1" title="Welcome" newcontext="true">

<p>

Hello World!

</p>

</card>

</wml>

WML elements WML Reference

29

The deck generates the following user interface in the user agent:

A single card.

template element

Description

The template element declares a template for cards in the deck. Event bindings
specified in the template (for example, do or onevent) apply to all cards in the
deck. Specifying an event binding in the template is equivalent to specifying it in
every card. A card element may override the behavior specified in the template. In
particular, note the following override rules:

 do elements specified in the template may be overridden in individual cards if
both elements have the same name attribute value.

 Intrinsic event bindings specified in the template may be overridden by event
bindings in a card.

Contained elements

do *

onevent *

Syntax

The attributes of the template element are explained in the following table.

Attribute Explanation

onenterforward=href Specifies an intrinsic event that instructs the user
agent to go to the specified URL when the user
enters this card. For more information, see
“onenterforward event” on page 39.

onenterbackward=href Specifies an intrinsic event that instructs the user
agent to go to the specified URL when the user
navigates backwards to this card, for example,
using a prev task. For more information, see
“onenterbackward event” on page 40.

WML Reference WML elements

30

Attribute Explanation

ontimer=href Specifies an intrinsic event that instructs the user
agent to go to the specified URL after the timer
has expired. For more information, see “ontimer
event” on page 38.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [18.]

The following template element includes a do element indicating navigation to
the previous card in the deck.

<template>

<do type="prev" label="Previous">

<prev/>

</do>

</template>

head element

Description

The head element contains information relating to the deck as a whole, including
meta-data and access control elements.

You must include one of the following elements at least once inside a head element:

 access

 meta

Contained elements

(access|meta) +

Example [19.]

See the access and meta element examples:

 access: Example [20.] on page 32.

 meta: Example [21.] on page 34.

WML elements WML Reference

31

access element

Description

The access element specifies access control information for the entire deck. Note
that it is a WML syntax error for a deck to contain more than one access element.
If a deck does not include an access element, access control is disabled. When
access control s disabled, cards in any deck can access this deck.

The default access control settings let you access any URIs in the same domain. The
user agent uses a prefix match to compare the URIs of decks trying to access your
deck with the attribute values you define.

The following table lists the elements that let you navigate between decks and the
associated access settings the target deck must specify.

Element Access requirements

prev None.

go href=href The deck located at the specified URI must specify
domain and/or path attributes that match the URI
of the requesting deck.

Contained elements

None.

Syntax

The attributes of the access element are explained in the following table.

Attribute Explanation

domain=cdata

path=cdata

A deck’s domain and path attributes specify the
other decks that can access it. As the user agent
navigates from one deck to another, it performs
access control checks to determine whether the
destination deck allows access from the current
deck.

If a deck has a domain and/or path attribute, the
referring deck’s URL must match the values of
the attributes. Matching is done as follows: the
access domain is suffix-matched against the
domain name portion of the referring URL and
the access path is prefix-matched against the path
portion of the referring URL.

WML Reference WML elements

32

Attribute Explanation

Domain suffix matching is done using the entire
element of each sub-domain and must match each
element exactly. For example,
www.acmecorp.com matches acmecorp.com, but
does not match corp.com. Path prefix matching
is done using entire path elements and must match
each element exactly. For example, /X/Y matches
path="/X" attribute, but does not match
path="/XZ" attribute.

The domain attribute defaults to the current
deck’s domain. The path attribute defaults to the
value "/".

To simplify the development of applications that
may not know the absolute path to the current
deck, the path attribute accepts relative URLs.
The user agent converts the relative path to an
absolute path and then performs prefix matching
against the path attribute.

Domain and path follow URL capitalization
rules.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [20.]

For example, given the following access control attributes:
domain="acmecorp.com"

path="/pub"

 The following referring URLs would be allowed to access the deck:
acmecorp.com/pub/stocks.cgi

www.acmecorp.com/pub/demos/packages.cgi

 The following referring URLs would not be allowed to access the deck:
www.test.net/pub

www.acmecorp.com/internal/foo.wml

The following head element includes an access control element indicating that only
decks in the WML directory of the domain mycompany.com can access this deck.

WML elements WML Reference

33

<head>

<!-- NOTE: The DOMAIN and PATH must be customized for

 your network location of the WML decks -->

<access domain="mycompany.com" path="/WML" >

</head>

meta element

Description

The meta element contains generic meta information relating to the WML deck.
Meta information is specified with property names and values.

Note that it is a WML syntax error for a meta element to contain more than one
attribute specifying a property name, that is, more than one attribute from the
following set: name and http-equiv.

Contained elements

None.

Syntax

The attributes of the meta element are explained in the following table.

Attribute Explanation

content=cdata This attribute specifies the property value. It is
required.

name=cdata This attribute specifies the property name. The
user agent ignores named meta-data. Network
servers do not emit WML content containing
meta-data named with this attribute.

http-equiv=cdata This attribute may be used in place of name; it
indicates that the property should be interpreted
as an HTTP header. Meta-data named with this
attribute is converted to a WSP or HTTP
response header if the content is tokenized before
it arrives at the user agent.

WML Reference WML elements

34

Attribute Explanation

forua=boolean This attribute specifies that the author intended
the property to reach the user agent. If the value is
false, an interrmediate agement must remove the
meta element before the document is sent to the
client. If the value is true, the meta data of the
element must be delivered to the user-agent. The
method of delivery may vary. For example, http-
equiv meta data may be delivered using HTTP or
WSP headers.

scheme=cdata This attribute specifies a form or structure that
may be used to interpret the property value. Note
that scheme values vary depending on the type of
meta-data.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [21.]

The following head element includes an access control element, described above in
the previous example, and a meta element that provides information to the user
agent on the character set used in the WML deck.

<head>

<!-- NOTE: The domain and path must be customized for

 your network location of the WML decks -->

<access domain="mycompany.com" path="/WML" >

<meta content="charset" user agent="character-set=UTF-8"/>

</head>

Events

WML includes several elements that allow you to handle navigation and events by
specifying the processing of user agent events. For example, you may associate
events with tasks so that when an event occurs, the associated task is executed. You
may specify a variety of tasks, such as navigation to an URL. Event bindings can be
implemented by several elements, including do and onevent.

WML elements WML Reference

35

do element

Description

The do element gives the user a general mechanism for performing actions on the
current card, that is, a card-level user interface element. The do element is mapped
to an unique user interface widget that the user can activate. For example, the
widget mapping may be to a graphically rendered button, a soft key or function
key, a voice-activated command sequence, or any other interface that has a simple
“activate” operation with no inter-operation persistent state.

The type attribute is provided as an indication to the user agent of how the WML
author intended the element to be used, and is taken by the user agent to provide a
suitable mapping onto a physical user interface construction. Note that WML
authors must not rely on the semantics or behavior of an individual type value, or
on the mapping of type to a particular physical construction.

The do element may appear at both the card-level and deck-level:

 Card-level: The do element may appear inside a card and may be located
anywhere in the text flow. If the user agent intends to render the do element
inline (that is, in the text flow), it should use the element’s anchor point as the
rendering point. Note that WML authors must not assume that the inline
rendering of the do element is correct; nor must they assume that the inline
rendering of the element is positioned correctly.

 Deck-level: The do element may appear inside a template, indicating a deck-
level do element. A deck-level do element applies to all cards in the deck, that
is, it is equivalent to specifying the do within each card. For the purposes of
inline rendering, the user agent behaves as if deck-level do elements were
located at the end of the card’s text flow.

In particular, you should pay attention to the following:

 A card-level do element overrides a deck-level do element if they have the same
name. For a single card, the active do elements are defined as the do elements
specified in the card, plus any do elements specified in the deck’s template
and not overridden in the card.

 The inactive do elements and the active do elements with a noop task element
are not presented to the user.

 The user can access all the do elements with a task other than noop. The user
can activate these user interface items when viewing the card containing the
active do elements. When the user activates a do element, the associated task is
executed.

Contained elements

go|prev|noop|refresh

WML Reference WML elements

36

Syntax

The attributes of the do element are explained in the following table.

Attribute Explanation

type=cdata The do element type. This attribute provides an
indication to the user agent about how the WML
author intended the element to be used, and how
it should be mapped to a physical user interface
construction. All types are reserved, except for
those marked as experimental.

This attribute is required.

User agents accept any type, but may treat any
unrecognized type as the equivalent of unknown.

In the following, the * character represents any
string. For example, Test * indicates any string
starting with the word Test.

accept Positive acknowledgement
(acceptance).

prev Navigates backwards
through history.

help Request for help. May be
context-sensitive.

reset Clearing or resetting state.

options Context-sensitive request
for options or additional
operations.

delete Delete item or choice.

unknown A generic do element.
Equivalent to an empty
string, e.g., type="".

X-*, x-* Experimental types. This set
is not reserved.

WML elements WML Reference

37

Attribute Explanation

vnd.*, VND.*

and any

combination of

[Vv] [Nn] [Dd]

.*

Vendor-specific or user-
agent-specific types. This set
is not reserved. Vendors
should allocate names with
the format VND.CO-
TYPE, where CO is a
company name abbreviation
and type is the do element.

label=vdata This attribute specifies a textual string for labeling
the user interface widget. If an element cannot be
dynamically labeled, this attribute is ignored. To
work well, labels should have no more than six
characters.

name=nmtoken This attribute specifies the name of the do event
binding. If two do elements are specified with the
same name, they refer to the same binding. If do
elements are specified both at the card-level (in a
card) and at the deck-level (in a template) and
both elements have the same name, the deck-level
do element is ignored. It is a WML syntax error to
specify two or more do elements with the same
name in a single card or in the template. A name
with an empty value is equivalent to an
unspecified name attribute. An unspecified name
defaults to the value of the type attribute.

optional=boolean If you set this attribute to true, the user agent
may ignore this element.

The default is false.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [22.]

This example demonstrates a DO element that includes a go task. When the user
activates the element by selecting Next, the user agent goes to card2 in the current
deck and displays it to the user.

WML Reference WML elements

38

<card id="card1">

<do type="accept" label="Next">

<go href="#card2"/>

</do>

<p>

Select Next to go to the next card.

</p>

</card>

<card id="card2">

<p>

This is card 2.

</p>

</card>

For a more comprehensive example of using the do element, see “Override
example [29.]” on page 45.

ontimer event

Description

The ontimer event can be specified inside the following elements:

 card

 template

The event occurs when a timer expires.

Syntax

The attributes of the ontimer event are explained in the following table.

Attribute Explanation

ontimer=href Specifies an intrinsic event that instructs the user
agent to go to the specified URI after the timer has
expired.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

WML elements WML Reference

39

Example [23.]

The following is a simple example of the ontimer element:

<card id="cardname" ontimer="http://wapserver/hello.wml" title="title">

<timer value="50"/>

<p>

Hello World!

</p>

</card>

onenterforward event

Description

The onenterforward event occurs when the user enters a card using a go task or
any method with identical semantics.

The onenterforward intrinsic event may be specified inside the following
elements:

 card

 template

Event bindings specified in the template apply to all cards in the deck and may be
overridden as specified in “Card and deck task override” on page 44.

Syntax

The attributes of the onenterforward event are explained in the following table.

Attribute Explanation

onenterforward=href Specifies an intrinsic event that instructs the user
agent to go to the specified URI when the user
enters this card.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [24.]

You can specify that certain tasks are to be executed when an intrinsic event occurs
in two ways.

WML Reference WML elements

40

First, you can specify an URI to be navigated to when the event occurs. This event
binding is specified in a well-defined element-specific attribute which is the
equivalent of a go task. For example:

<card onenterforward="http://wapserver/hello.wml"> Hello World! You came

back </card>

Note that the message “Hello World! You came back” is not displayed when you
navigate forward to this card. Similarly, when you navigate to this card backwards,
the card is displayed.

Second, you can use an expanded version of the method above, which gives you
more control over user agent behavior. An onevent element is implemented within
a parent element, specifying the full event binding for a particular intrinsic event.
For example, the following is identical to the previous example:

<card>

<onevent type="onenterforward">

<go href=" http://wapserver/hello.wml "/>

</onevent>

<p>

Hello World! You came back.

</p>

</card>

However, the user agent treats the attribute syntax as an abbreviated form of the
onevent element where the attribute name is mapped to the onevent type.

onenterbackward event

The onenterbackward event occurs when the user navigates into a card using a
prev task or any method with identical semantics. In other words, the
onenterbackward event occurs when the user navigates into a card by using an
URL retrieved from the history stack.

The onenterbackward intrinsic event may be specified inside the following
elements:

 card

 template

Event bindings specified in the template apply to all cards in the deck and may be
overridden as specified in “Card and deck task override” on page 44.

Syntax

The attributes of the onenterbackward event are explained in the following table.

WML elements WML Reference

41

Attribute Explanation

onenterbackward=href Specifies an intrinsic event that instructs the user
agent to go to the specified URI when the user
navigates backwards to this card, for example,
using a prev task.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [25.]

In the following example, the onenterbackward event causes the user agent to
navigate to card2 when the user enters this card using a prev task or navigating
backwards in the history stack. This means that card2 is displayed to the user
instead of card1. Note that if the user navigates forward to this card by using the
go task, for example, card1 is displayed.

<card id="card1">

<onevent type="onenterbackward">

<go href="#card2"/>

</onevent>

<p>

Hello World!

</p>

</card>

<card id="card2">

<p>

You came back!

</p>

</card>

Similar to the previous example, card1 could also be presented as follows:

<card id="card1" onenterforward="#card2"> Hello World! </card>

onpick event

Description

The onpick event occurs when the user selects or deselects the item in which the
event is specified.

The onpick intrinsic event may be specified inside the option element.

Syntax

The attributes of the onpick event are explained in the following table.

WML Reference WML elements

42

Attribute Explanation

onpick=href Specifies an intrinsic event that instructs the user
agent to go to the specified URI when the user
selects the option (or deselects it if the select
element allows multiple choices) in which the
event is specified.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [26.]

In the following example, when the user selects an item from the option list, the
user agent navigates to the appropriate deck in the same domain. For example, if the
user selects item 1, information on cats, the user agent navigates to the deck
cat.wml containing information on cats.

<card id="Card_1">

<p>

Select your favorite animal:

<select name="animal">

<option value="1" onpick="cat.wml"> Cat </option>

<option value="2" onpick="dog.wml"> Dog </option>

<option value="3" onpick="horse.wml"> Horse </option>

</select>

</p>

</card>

onevent element

Description

The onevent element binds a task to a particular intrinsic event for the immediately
enclosing element; that is, specifying an onevent element inside an element
associates an intrinsic event binding with that element.

The user agent ignores any onevent element specifying a type that does not
correspond to a legal intrinsic event for the immediately enclosing element.

Contained elements

go|prev|noop|refresh

Syntax

The attributes of the onevent element are explained in the following table.

WML elements WML Reference

43

Attribute Explanation

type=CDATA The type attribute indicates the name of the
intrinsic event.

This attribute is required.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [27.]

The following card indicates that when a user navigates backwards to it, the
onenterbackward event is activated and the card’s message is not displayed to the
user. Instead, the user agent navigates to the deck foo.wml located in the domain
www.acme.com.

Note that if the user navigates forward to this card, its content is displayed.

<card>

<onenvent type="onenterbackward">

<go href="http://www.acme.com/foo.wml"/>

</onevent>

<p>

Welcome to a new age!

</p>

</card>

postfield element

Description

The postfield element specifies a field name and value for transmission to an
origin server during a URL request. The actual encoding of the name and value will
depend on the method used to communicate with the origin server.

Contained elements

None.

Syntax

The attributes of the postfield element are explained in the following table.

Attribute Explanation

name=vdata The name attribute specifies the field name.

This attribute is required.

WML Reference WML elements

44

Attribute Explanation

value=vdata The value attribute specifies the field value.

This attribute is required.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [28.]

The following example posts three name values to the web server, letting you send
data back from the client. HTTP POST method is used to send the data.

<go method="post" href="http://hostname/servlet/bank">

<postfield name="money" value="100"/>

<postfield name="account" value="12345"/>

<postfield name="operation" value="deposit"/>

</go>

Card and deck intrinsic events

You may specify the onenterforward and onenterbackward intrinsic events at
both the card and deck level using the override semantics defined in “Card and deck
task override” on page 44. Intrinsic events may be overridden regardless of the
syntax used to specify them. A deck-level event-handler specified with the onevent
element may be overridden by the onenterforward element and vice versa.

Card and deck task override

You can use a variety of elements to create an event binding for a card. These
bindings may also be declared at the deck-level:

 Card-level: The event-handling element may appear inside a card and specify
event-processing behavior for that particular card.

 Deck-level: The event-handling element may appear inside a template and
specify event-processing behavior for all cards in the deck. A deck-level event-
handling element is equivalent to specifying the element in each card of the
deck.

In particular, you should notice the following override rules:

 A card-level event-handling element overrides a deck-level event-handling
element if they both specify the same event.

WML elements WML Reference

45

 A card-level onevent element overrides a deck-level onevent element if they
both have the same type.

 A card-level do element overrides a deck-level do element if they have the same
name.

If a card-level element overrides a deck-level element and the card-level element
specifies the noop task, the event binding for that event will be completely masked.
In this situation, the card-level and deck-level elements will be ignored and no side
effects will occur on delivery of the event. In this case, the user agent will not show
the element to the user, for example, render a UI control. In effect, the noop
removes the element from the card.

Override example [29.]

In the following example, a deck-level do element indicates that a prev task should
execute on receipt of a particular user action.

 The first card inherits the do element specified in the template and will
displays the do to the user.

 The second card overrides the deck-level do with a noop. The user agent does
not display the do element when displaying the second card.

 The third card overrides the deck-level do, causing the user agent to display the
alternative label and to perform the go task if the do is selected.

<wml>

<template>

<do type="options" name="do1" label="default">

<prev/>

</do>

</template>

<card id="first">

<!-- deck-level do not overridden. The card

 exposes the deck-level do as part of the current card. -->

<!-- rest of the card -->

...

</card>

<card id="second">

<!-- deck-level do is overridden with noop.

 It is not exposed to the user. -->

<do type="options" name="do1">

<noop/>

</do>

<!-- rest of the card -->

...

</card>

<card id="third">

<!-- deck-level do is overridden.

 It is replaced by a card-level do -->

<do type="options" name="do1" label="options">

WML Reference WML elements

46

<go href="/options"/>

</do>

<!-- rest of the card -->

...

</card>

</wml>

Tasks

WML allows you to specify tasks that can be performed when a certain event
occurs, such as navigating to a specified card or deck.

WML includes four task elements that are described in more detail in the following
sections:

 go

 prev

 noop

 refresh

Tasks are bound to events in the following events:

 do

 onevent

An anchor element may contain a go, prev, or refresh task.

go task

Description

The go element declares a go task, indicating navigation to an URL. If the URL
names a WML card or deck, it is displayed. A go executes a push operation on the
history stack.

Contained elements

setvar *

postfield *

Syntax

The attributes of the go element are explained in the following table.

WML elements WML Reference

47

Attribute Explanation

href=href This attribute specifies the destination URI, for
example, the URI of the card to display.

This attribute is required.

sendreferer=boolean If you set this attribute to true, the user agent
includes the URL of the deck containing this task
in the URI request. This allows a server to
perform a form of access control on URIs, based
on the decks that link to them. Specifying
sendreferer=true causes the user agent to set
the HTTP “Referer” header to the smallest
relative URI of the requesting deck.

Note that if you want to restrict access to your
services, the decks that request URIs of your
services must set this option to true.

The default value is false.

method=(post|get) This attribute specifies the HTTP submission
method. Currently, the values of get and post
are accepted and cause the user agent to perform
an HTTP get or post respectively..

The default value is get.

accept-charset=CDATA This attribute specifies the list of character
encodings for data that the web server must
accept when processing input. The value of this
attribute taken from a list of character encoding
names (charset), separated by commas or spaces
as specified in RFC2045 and RFC2068. The
IANA Character Set registry defines the public
registry for charset values. This list is an
exclusive-OR list, that is, the server must accept
all of the acceptable character encodings.

The default value for this attribute is the reserved
string unknown. The user agent interprets this
value as the character encoding that was used to
transmit the WML deck containing this attribute.

For a list of character sets supported by the WAP
Toolkit, see “WML character set” on page 9.

id See "Common attributes" on page 23.

WML Reference WML elements

48

Attribute Explanation

class See "Common attributes" on page 23.

The go element may contain one or more postfield elements. These elements
specify information to be submitted to the origin server during the request. The
submission of field data is performed in the following manner:

1 The field name/value pairs are identified and all variables are substituted.

2 The user agent should transcode the field names and values to the correct
character set, as specified explicitly by the accept–charset or implicitly by
the document encoding.

3 The field names and values are escaped using URL-escaping and assembled into
an application/x-www-form-urlencoded content type. URL-escaping is
defined in RFC2396 and the assembly of the content is specified in RFC2070.

4 The request is preformed according to the method attribute's value:

 get – if the method attribute has a value of get and the href attribute
value is an HTTP URI, the submission data is added to the query
component of the URI. An HTTP GET operation is performed on the
resulting URL.

 post – if the method attribute has a value of post and the href attribute
value is an HTTP URI, the submission data is sent to the origin server
with an HTTP POST operation. The submission is identified with a
content type of application/x-www-form-urlencoded, with a charset
parameter indicating the character encoding.

Example [30.]

In the following example, the go element would cause an HTTP GET request to
the URL "/foo?x=1":

<go href="/foo">

<postfield name="x" value="1"/>

</go>

The next example causes an HTTP POST to the URL "/bar" with a message entity
containing "w=12&y=test":

<go href="/bar" method="post">

<postfield name="w" value="12"/>

<postfield name="y" value="test"/>

</go>

WML elements WML Reference

49

The following example creates a user interface widget with the label Help and goes
to the card named help when activated.

<card id="card1">

<do type="help" label="Help">

<go href="#help"/>

</do>

</card>

<card id="help">

<p>

Help topics:

...

</p>

</card>

prev task

Description

The prev element declares a prev task, indicating navigation to the previous URI
in the history stack. A prev performs a pop operation on the history stack and
removes the current URI from the history stack. If there is no previous URI in the
history stack, the prev element has no effect.

Contained elements

setvar *

Syntax

The attributes of the prev element are explained in the following table.

Attribute Explanation

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [31.]

The following example creates a user interface widget with the label Back and goes
to the previous card when activated.

<do type="accept" label="Back">

<prev/>

</do>

<p>

Hello, World!

</p>

WML Reference WML elements

50

refresh task

Description

The refresh element declares a refresh task, indicating an update of the specified
card variables. Side effects of the state changes that are visible to the user (for
example, a change in the screen display) occur during the processing of the refresh
task. A refresh and its side effects must occur even if the elements have no setvar
elements given that context may change by other means (e.g., timer).

Contained elements

setvar *

Syntax

The attributes of the refresh element are explained in the following table.

Attribute Explanation

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [32.]

The following WML will set a value foo for the variable product and refresh the
display to update variable values.

<refresh>

<setvar name="product" value="foo"/>

</refresh>

noop task

Description

The noop element specifies that nothing should be done, that is, “no operation”.
This element is useful for overriding deck-level do elements.

The attributes of the noop element are explained in the following table.

Attribute Explanation

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

WML elements WML Reference

51

Variables

Parameters can be set for all WML content, giving you a great deal of flexibility in
creating cards and decks that dynamically change display content and navigation
based on user input. WML variables can be used instead of strings and are
substituted at runtime with their current value.

A variable is set if it has a value that does not equal the empty string. A value is not
set if it has a value equal to the empty string, or is otherwise unknown or undefined
in the current browser context.

For a comprehensive variable example, see Example [46.] on page 85.

setvar element

Description

The setvar element specifies the variable to set in the current browser context as a
side effect of executing a task. The element is ignored if the name attribute does not
evaluate to a legal variable name at runtime.

Contained elements

None.

Syntax

The variable attributes are explained in the following table.

Attribute Explanation

name=vdata Specifies the variable name. This attribute is
required.

value=vdata Specifies the value to be assigned to the variable.
This attribute is required.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [33.]

The following example sets a variable named product with the default value
WapSdk and provides a soft key labeled Clear. When the user selects Clear, the
product variable value is cleared and the current deck display is refreshed with the
empty value.

WML Reference WML elements

52

<card id="Product" title="Choose Product">

<p>

Product name:

<input title="Product name" name="product" value="WapSdk"/>

<do type=”accept” label="Clear">

<refresh>

<setvar name="product" value=""/>

</refresh>

</do>

</p>

</card>

Naming variables

WML variable names consist of an US-ASCII letter or underscore followed by a
zero or more letters, digits or underscores. Any other characters are illegal and
result in an error. Note also that variable names are case sensitive. Parentheses are
required anywhere the end of a variable cannot be inferred from the surrounding
context, for example, if the variable ends with an illegal character such as a white
space. The following examples demonstrate legal variables:

This is a $var

This is another $(var).

This is an escaped $(var:e).

Long form of escaped $(var:escape).

Long form of unescape $(var:unesc).

Short form of no-escape $(var:N).

Other legal variable forms: $_X $X32 $Test_9A

A side effect of the parsing rules is that the literal dollar sign must be encoded with
a pair of dollar sign entities. A single dollar sign entity, even when specified as
$, results in a variable substitution.

In order to include a $ character in a WML deck, it must be explicitly escaped by
using the following syntax:

$$

Two dollar signs in a row are replaced by a single $ character. For example:

This is a $$ character.

would be displayed as:

This is a $ character.

To include the $ character in URL-escaped strings, specify it with the URL-escaped
form %24.

! Note: Variable names are case sensitive. This means that variable1,
Variable1 and varIABle1 are all different variables.

WML elements WML Reference

53

Validating variables

Within the WML document, any string following a single dollar sign ('$') must be
treated as a variable reference and validated. Each reference must use proper
variable name syntax. Each reference must be placed either within a card's text
(#PCDATA) or within %vdata or %href attribute values. The deck is in error if any
variable reference uses invalid syntax or is placed in an invalid location.

Example [34.]

The following examples show invalid variable use:

<!-- bad variable syntx -->

Balance left is $10.00

<!--bad placement (in the type attribute) -->

<do type="x-$(type)" label="$type">

Restricting variable context

User agents may provide users means to reference and navigate to resources
independent of the current content. For example, user agents may provide
bookmarks or a URL input dialog. Whenever a user agent navigates to a resource
that was not the result of an interaction with the content in the current context, the
user agent must establish another context for that navigation. The user agent may
terminate the current context before establishing another one for the new
navigation attempt.

Setting variables

There are a number of ways to set the value of a variable. When a variable is set and
already defined in the browser context, the current value is updated.

The setvar element allows you to set the variable state as a side effect of
navigation. Setvar may be specified in the following task elements:

 go

 prev

 refresh

Variables can also be set in the following situations:

 Input elements set the variable identified by the name attribute to any
information entered by the user.

— The input element assigns the entered text to the variable.

— The select element assigns the value present in the value attribute of the
chosen option element.

Note that the user input is written to variables when the user commits the input to
the input or select element.

WML Reference WML elements

54

The setvar element specifies a variable name and value, for example:

<setvar name="location" value="$(X)"/>

The variable name specified in the name attribute (for example, location) is set as a
side effect of navigation. For more information on the processing of the setvar
element, see “History” on page 21.

Note the following when setting variables:

 You can change variable values set with WML using WMLScript and vice
versa. This indicates that WML and WMLScript use the same variables.

 You can set and edit variables in the WAP Toolkit Variables view.

 You can use the card element's newcontext attribute to clear all variable
values of the current browser context.

 If a go element's href attribute has variable references, the variable references
are only resolved against the variables in the Browser Context. These variable
references are not resolved against any setvar elements within the go element.

 If a go element contains setvar elements and the name or value of the setvar
elements contain variable references, the variable references are resolved against
the variables in the Browser Context. These variable references are not resolved
against any setvar elements within the go element.

Substituting variables

You can substitute variable values into formatted text (PCDATA), option values
(vdata) and href attributes in WML elements. However, note that only textual
information can be substituted, that is, no substitution of elements or attributes is
possible. The substitution of variable values happens at runtime in the user agent.
As the substitution is merely a string substitution operation, it does not affect the
current value of the variable. If an undefined variable is referenced, it results in the
substitution of an empty string.

The value of variables can be converted into a different form as they are substituted.
A conversion can be specified in the variable reference following the colon. The
following table summarizes the current conversions and their legal abbreviations.

Variable reference Explanation

$setvar or
$(setvar)

Substitutes the value of setvar. The user agent
escapes the variable using URL escaping
conventions in the appropriate context.

$(setvar:e) or
$(setvar:escape)

Substitutes the value of setvar, escaping non-
alphanumeric characters according to URL
encoding conventions.

WML elements WML Reference

55

Variable reference Explanation

$(setvar:unesc) Substitutes the value of setvar, unescaping non-
alphanumeric characters according to URL
encoding conventions.

$(setvar:N) or
$(setvar:noesc)

Substitutes the value of setvar, without escaping
non-alphanumeric characters.

Note that the use of a conversion during variable substitution does not affect the
actual value of the variable.

URL escaping is detailed in RFC2396. All lexically sensitive characters defined in
WML must be escaped, including all reserved and unsafe URL characters, as
specified by RFC2396.

If no conversion is specified, the variable is substituted using the conversion format
appropriate for the context. The onenterbackward, onenterforward, href and
src attributes default to escape conversion; elsewhere, no conversion is done.
Specifying the noesc conversion disables context-sensitive escaping of a variable.

The following example illustrates posting name value pairs to a web server so that
data can be sent from the client:

<go method="post" href="http://hostname/servlet/dealer">

<postfield name="make" value="ford"/>

<postfield name="car" value="escort"/>

</go>

For more detailed information on the variable substitution syntax, refer to the
WML Specification.

Parsing the variable substitution syntax
The variable substitution syntax (for example, $X) is parsed after all XML parsing is
complete. This implies that all variable syntax is parsed after the XML constructs,
such as elements and entities, have been parsed. In the context of variable parsing,
all XML syntax takes precedence over the variable syntax, for example, entity
substitution occurs before the variable substitution syntax is parsed.

The following examples are identical references to the variable named X:
$X

$X

$X

$X

User input

The following sections discuss how to handle user input in WML.

WML Reference WML elements

56

input element

Description

The input element specifies a text entry object. You can specify the format of the
user input with the optional format attribute. If a valid input mask is bound to an
input object, the user agent must ensure that any value collected by the entry object
conforms to the bound input mask. If the input collected does not conform to the
input mask, the user agent must not commit that input and must notify the user
that the input was rejected an d allow the user to resubmit new input. The user
agent must not initialize the input object with any value that does not conform to
the bound input mask. In the event that initializing data does not conform to the
input mask, the user agent must behave as if there was no initialization data.

Contained elements

None.

Syntax

The attributes of the input element are explained in the following table.

Attribute Explanation

name=nmtoken The name attribute specifies the name of the
variable to set with the result of the user’s text
input. The name variable’s value is used to pre-
load the text entry object. The name attribute is
required.

value=vdata The value attribute indicates the default value of
the variable named in the name attribute. When
the element is displayed and the variable named in
the name attribute is not set, the name variable is
assigned the value specified in the value attribute.
If the name variable already contains a value, the
value attribute is ignored. If the value attribute
specifies a value that does not conform to the
input mask specified by the format attribute, the
user agent ignores the value attribute. In the case
where no valid value can be established, the name
variable is left unset.

type=(text|password) This attribute specifies the type of the text-input
area. The default type is text. The following
values are allowed:

WML elements WML Reference

57

Attribute Explanation

text A text entry control. The input is
echoed in a manner appropriate to
the user agent and the input mask.
If the submitted value conforms to
an existing input mask, the user
agent must store that input
unaltered and in its entirety in the
variable named in the name
attribute. For example, the user
agent must not trim the input by
removing leading or trailing white
space from the input. If the
variable named by the name
attribute is unset, the user agent
should echo an empty string in an
appropriate manner.

password A text entry control. Input of each
character is echoed in an obscured
form, in a manner appropriate to
the user agent. For example, visual
user agents may elect to display an
asterisk in place of a character
entered by the user. Typically, the
password input mode is indicated
for password entry or other private
data. Note that password input is
insecure and critical applications
should not be dependent on it.

Similar to a text type, if the
submitted value conforms to an
existing input mask, the user agent
must store input unaltered and in
its entirety in the variable named in
the name attribute. User agents
should not obscure non-formatting
characters of the input mask. If the
variable named by the name
attribute is unset, the user agent
should echo an empty string in an
appropriate manner.

WML Reference WML elements

58

Attribute Explanation

format=cdata This attribute specifies an input mask for user
input entries. The string consists of mask control
characters and static text that is displayed in the
input area. An input mask is only valid when it
contains legal format codes only. User agents
must ignore invalid masks.

The format control characters specify the data
format that the user is expected to enter. The
default format is “*M”. The format codes are
explained in the following.

A Allows any uppercase alphabetic
or punctuation character, that is,
uppercase non-numeric character.

a Allows any lowercase alphabetic
or punctuation character, that is,
lowercase non-numeric character.

N Allows any numeric character.

X Allows any uppercase character.

x Allows any lowercase character.

M Allows any character. The user
agent may choose to assume that
the character is uppercase for the
purposes of simple data entry, but
must allow entry of any character.

m Allows any character. The user
agent may choose to assume that
the character is lowercase for the
purposes of simple data entry, but
must allow entry of any character.

*f Allows any number of characters; f
is one of the above format codes
and specifies what kind of
characters can be entered. Note
that this format can only be
specified once and must appear at
the end of the format string.

WML elements WML Reference

59

Attribute Explanation

nf Allows n characters where n is a
number from 1 to 9; f is one of the
above format codes (except *f) and
specifies what kind of characters
can be entered. Note that this
format can only be specified once
and must appear at the end of the
format string.

\c Displays the next character, c, in
the entry field. Allows escaping of
the format codes as well as
introducing non-formatting
characters so they can be displayed
in the entry area. Escaped
characters are considered part of
the input's value, and must be
preserved by the user agent. For
example, the stored value of the
input "12345-123" having a mask
"NNNNN\ -3N" is "12345-123"
and not "12345123". Similarly, if
the value of the variable named by
the name attribute is "12345123
and the mask is "NNNNN\ –3N"
the user agent must unset the
variable since it does not conform
to the mask.

emptyok=boolean If you set this attribute to true, the input element
accepts empty input although a format string that
is not empty has been specified. Typically, the
emptyok attribute is indicated for formatted entry
fields that are optional. By default, input
elements specifying a format require the user to
input data matching the format specification, that
is, emptyok=false.

size=number This attribute specifies the width, in characters, of
the text input area.

maxlength=number This attribute specifies the maximum number of
characters that the user can enter in the text entry
area. The default value for this attribute is an
unlimited number of characters.

WML Reference WML elements

60

Attribute Explanation

title=vdata This attribute specifies a title for the input
element. The title may be used in the presentation
of this object.

tabindex=number The tabindex element specifies the tabbing
position of the current element. The tabbing
position indicates the relative order in which
elements are traversed when tabbing within a
single WML card. A numerically greater
tabindex value indicates an element that is later
in the tab sequence than an element with a
numerically lesser tabindex value.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [35.]

The first example specifies an input element that accepts any characters and
displays the input to the user in a form the user can read. The maximum number of
characters that can be entered is 32, and the resulting input is assigned to the
variable named X.

<input name="X" type="text" maxlength="32"/>

The next example requests input from the user and assigns the resulting input to the
variable name. The text field has a default value of “Robert”.

<input name="name" type="text" value="Robert"/>

The following example is a card that prompts the user for a first name, last name
and age. Note that in the Age field the user can enter a two-digit number.

<card>

<p>

First name: <input type="text" name="first"/>

Last name: <input type="text" name="last"/>

Age: <input type="text" name="age" format="NN"/>

</p>

</card>

WML elements WML Reference

61

select element

Description

Select list is an input element that allows the user to choose from a list of options.
WML supports both single-choice and multiple-choice lists.

The select element lets users pick from a list of options. Each option is specified
by an option element having one line of formatted text. You can organize option
elements into hierarchical groups using the optgroup element.

You must include one of the following elements at least once inside a select
element:

 optgroup

 option

On entry into a card containing a select element, the initial options are selected as
follows:

 If the iname attribute exists, the indices in the variable named by the iname are
used to select the option. If the specified variable is not set, the index is
assumed to be 1. If any index is larger than the number of options in the select
list, the last entry is selected.

 If the iname attribute does not exist and the name attribute exists, the value of
the variable specified by name is used to select the options. If the variable
specified by name is not set or no option has a value attribute matching the
value, the first option is selected.

Once an option is selected, the variable named by name is updated to the value of
the option.

Both name and iname, or value and ivalue may be specified. ivalue takes
precedence over value, and iname takes precedence over name.

Contained elements

optgroup +

option +

Syntax

The attributes of the select element are explained in the following table.

Attribute Explanation

multiple=boolean If you set this attribute to true, the select list
accepts multiple selections. If it is not set, the
select list accepts only a single selected option.

The default value is false.

WML Reference WML elements

62

Attribute Explanation

name=nmtoken The name attribute indicates the name of the
variable that gets the value of the chosen item.
The variable is set to the string value of the chosen
option element, which is specified with the
value attribute. The name variable’s value is used
to pre-select options in the select list.

value=vdata The value attribute indicates the default value of
the variable specified by the name attribute. If the
variable specified by the name attribute does not
have a value when the card is displayed, the user
agent assigns it the value specified in the value
attribute. If the name variable already contains a
value, the value attribute is ignored. Note that
any application of the default value is done before
the list is pre-selected with the value of the name
variable.

If this element allows the selection of multiple
options, the result of the user’s choice is a list of
all the selected values, separated by semicolons.
The name variable is set with this result. In
addition, the value attribute is interpreted as a
list of pre-selected options separated by
semicolons

iname=nmtoken The iname attribute indicates the name of a
variable containing an index number. The user
agent uses the index number to set the default
option. The number 1 specifies the first item, the
number 2 the second item, and so on. An index of
zero indicates that no option is selected. Index
numbering begins at one and increases
monotonically.

ivalue=vdata The ivalue attribute indicates the index of the
option element selected by default. If the variable
specified by the iname attribute is not set when
the card is displayed, it is assigned the entry
selected by default. If the variable already
contains a value, the ivalue attribute is ignored.
If the iname attribute is not specified, the ivalue
value is applied every time the card is displayed.

WML elements WML Reference

63

Attribute Explanation

If this element allows the selection of multiple
options, the index result of the user’s choice is a
list of the indices of all the selected options,
separated by semicolons (for example, 1;2). The
iname variable is set with this result. In addition,
the ivalue attribute is interpreted as a list of pre-
selected options separated by semicolons.

title=vdata This attribute specifies a title for the select
element, which may be used in the presentation of
this object.

tabindex=number The tabindex element specifies the tabbing
position of the current element. The tabbing
position indicates the relative order in which
elements are traversed when tabbing within a
single WML card. A numerically greater
tabindex value indicates an element that is later
in the tab sequence than an element with a
numerically lesser tabindex value.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [36.]

The following example specifies a multiple-choice list. Note the following:

 The “dog” and “cat” options would be pre-selected if the variable “I” had not
been previously set.

 If the user were to choose the “cat” and “horse” options, the variable “X”
would be set to “C;H” and the variable “I” would be set to “1;3”.

<wml>

<card>

<p>

Please choose <i>all</i> of your favorite animals:

<select name="X" iname="I" ivalue="1;2" multiple="true">

<option value="D">Dog</option>

<option value="C">Cat</option>

<option value="H">Horse</option>

</select>

</p>

</card>

</wml>

WML Reference WML elements

64

The deck generates the following user interface in the user agent (as shown on a
6150 model phone):

A card with a multiple-choice list.

option element

Description

The option element specifies a single choice option in a select element.

Contained elements

onevent *

Syntax

The attributes of the option element are explained in the following table.

Attribute Explanation

value=vdata This attribute specifies the value to be used when
setting the key variable. When the user selects this
option, the resulting value specified in the value
attribute is used to set the select element’s name
variable.

WML elements WML Reference

65

Attribute Explanation

The value attribute may contain variable
references, which are evaluated before the name
variable is set.

title=vdata This attribute specifies a title for the option
element, which may be used in the presentation of
this object.

onpick=href The onpick event occurs when the user selects or
deselects this option. A multiple-selection option
list generates an onpick event whenever the user
selects or deselects this option. A single-selection
option list generates an onpick event when the
user selects this option, that is, no event is
generated for the de-selection of any previously
selected option.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [37.]

The following example specifies a simple single-choice list. If the user were to
choose the “dog” option, the variable “X” would be set to a value of “D”.

See also:

 Example [36.] on page 63.

 Example [38.] on page 67.

<wml>

<card>

<p>

Please choose your favorite animal:

<select name="X">

<option value="D">Dog</option>

<option value="C">Cat</option>

</select>

</p>

</card>

</wml>

WML Reference WML elements

66

The deck generates the following user interface in the user agent (as shown on a
6150 model phone):

A card with a single-choice list.

The next example specifies a single-choice list with a default value.

Note the following:

 The “dog” option would be pre-selected if the “I” variable had not been
previously set.

 If the user were to choose the “cat” option, the variable “I” would be set to a
value of “2”.

<wml>

<card>

<p>

Please choose your favorite animal:

<select iname="I" ivalue="1">

<option value="D">Dog</option>

<option value="C">Cat</option>

</select>

</p>

</card>

</wml>

WML elements WML Reference

67

optgroup element

Description

The optgroup element allows you to group related option elements into a
hierarchy. The user agent uses this hierarchy to facilitate layout and presentation.

You must include one of the following elements at least once inside an optgroup
element:

 optgroup (nested element)

 option

Contained elements

(optgroup|option) +

Syntax

The attributes of the optgroup element are explained in the following table.

Attribute Explanation

title=vdata This attribute specifies a title for the optgroup
element, which may be used in the presentation of
this object.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [38.]

The following example demonstrates the use of option groups. The card contains
two geographical groups, “Scandinavia” and “Europe”.

<wml>

<card id="card1" title="Country">

<p>

Select a country:

<select name="country" multiple="true" tabindex="2">

<optgroup title="Scandinavia">

<option value="den">Denmark</option>

<option value="fin">Finland</option>

<option value="nor">Norway </option>

<option value="swe">Sweden </option>

</optgroup>

<optgroup title="Europe">

<option value ="fra">France </option>

WML Reference WML elements

68

<option value ="ger">Germany</option>

<option value ="ita">Italy </option>

<option value ="spa">Spain </option>

</optgroup>

</select>

</p>

</card>

</wml>

The deck generates the following user interface in the user agent (as shown on a
6110 model phone):

A deck with option groups.

fieldset element

Description

The fieldset element allows you to group related fields and text. The grouping
provides information to the user agent for optimizing layout and navigation.
fieldset elements may be nested, providing the user with a means of specifying
behavior across a wide variety of devices. For information on how the fieldset
element may influence layout and navigation, see “card element” on page 26.

Contained elements

input *

select *
fieldset * (nested element)
a *

img *

tab *

br *

(em|strong|b|i|u|big|small) *

WML elements WML Reference

69

Syntax

The attributes of the fieldset element are explained in the following table.

Attribute Explanation

title=vdata This attribute specifies a title for the fieldset
element, which may be used in the presentation of
this object.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [39.]

The following example specifies a WML deck that requests basic identity and
personal information from the user. It is separated into multiple field sets,
indicating the preferred field grouping to the user agent.

<wml>

<card id="info" title="Personal Info">

<do type="accept" label="Submit">

<go href="/submit?f=$(fname)&l=$(lname)&

 s=$(sex)&a=$(age)"/>

</do>

<p>

<fieldset title="Name">

First name: <input type ="text" name="fname"

maxlength="32"/>

Last name: <input type="text" name="lname" maxlength="32"/>

</fieldset>

<fieldset title="Info">

<select name="sex">

<option value="F">Female</option>

<option value="M">Male</option>

</select>

Age: <input type="text" name="age" format="*N"/>

</fieldset>

</p>

</card>

</wml>

WML Reference WML elements

70

Anchors, images and timers

The following sections provide information on the anchor, image and timer
elements of WML.

anchor element

Description

The anchor element specifies the head of a link. The tail of a link is specified as part
of other elements (e.g., a card name attribute). It is an error to nest anchored links.

You can use anchors anywhere formatted text is legal, except for option elements.

An anchored link must have an associated task that specifies the behavior when the
anchor is selected. You must anchor one of the following task elements to a link:

 go

 prev

 refresh

Note that it is a WML syntax error to specify more than one task in an anchor
element.

Contained elements

(go|prev|refresh|br|img) *

Syntax

The attributes of the anchor element are explained in the following table.

Attribute Explanation

title=vdata This attribute specifies a brief text string
identifying the link. For it to work well with a
broad range of user agents, keep your labels under
six characters.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

WML elements WML Reference

71

Example [40.]

<wml>

<card id="links" title="Links">

<p>

 This is normal text, but here is a

 <anchor title="LINK">link!

 <go href="dir/file.wml">

 <setvar name="var_name" value="var_value"/>

 </go>

 </anchor>

 </p>

 </card>

</wml>

The deck generates the following user interface in the user agent:

A card containing a link.

a element

Description

The a element is a short form of the anchor element and is bound to a go task
without variables. For example, the following markup:

<anchor>follow me

<go href="destination.wml"/>

</anchor>

is the same as:

 follow me

It is a WML syntax error to nest a elements.

Contained elements

(br|img) *

WML Reference WML elements

72

Syntax

The attributes of the a element are explained in the following table.

Attribute Explanation

title=vdata This attribute specifies a brief text string
identifying the link. For it to work well with a
broad range of user agents, keep your labels under
6 characters.

href This attribute specifies the destination URI, for
example, the URI of the card to display.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

img element

Description

You can place images in the text flow by using the img element. Images use the
same layout as normal text.

Contained elements

None.

Syntax

The attributes of the img element are explained in the following table.

Attribute Explanation

alt=vdata This attribute specifies an alternative textual
representation for the image used when the image
cannot be displayed using any other method, that
is, the image contents cannot be found, or the user
agent does not support image display.

WML elements WML Reference

73

Attribute Explanation

src=href This attribute specifies the URI for the image. The
browser downloads the image from the specified
URI and renders it when the text is being
displayed.

localsrc=vdata This attribute specifies an alternative internal
representation for the image. This representation
is used if it exists; otherwise the image is
downloaded from the URI specified in the SRC
attribute, that is, any localsrc attribute specified
takes precedence over the image specified in the
src attribute.

vspace=length

hspace=length

These attributes specify the amount of white
space to be inserted to the left and right (hspace)
and above and below (vspace) an image or object.
The default value for this attribute is not specified,
but is generally a short length that is not 0. Note
that if you specify length as a percentage value,
the resulting size is based on the available
horizontal or vertical space, not on the natural
size of the image.

align=

(top|middle|bottom)

This attribute specifies image alignment within
the text flow with respect to the current insertion
point. align has three possible values:

bottom The bottom of the image is
vertically aligned with the current
baseline. This is the default value.

middle The center of the image is
vertically aligned with the center of
the current text line.

top The top of the image is vertically
aligned with the top of the current
text line.

height=length

width=length

These attributes specify the size of an image or
object. User agents may scale objects and images
to match these values if appropriate. Note that if
you specify length as a percentage value, the
resulting size is based on the available horizontal
or vertical space, not on the natural size of the
image.

xml:lang See "Common attributes" on page 23.

WML Reference WML elements

74

Attribute Explanation

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [41.]

The following example illustrates the use of the img element. Note the following:

 src="bitmaps/moon.wbmp" refers to the file moon.wbm pthat is located in the
bitmaps directory in the same domain as the deck in which the img element is
included.

 One unit of white space is inserted to the left and right (hspace) as well as
above and below (vspace) the image.

<img src="bitmaps/moon.wbmp" alt="Moon" src="default.wbmp" hspace="1"

vspace="1"/>

See Example [45.] on page 81 for another example using the img element.

timer element

Description

The timer element implements a card timer, which can be used to process
inactivity or idle time. The timer is initialized and started at card entry and stopped
when the card is exited. Card entry is any task or user action that results in the card
being activated, for example, navigating into the card. Card exit is the execution of
any task. The value of a timer will decrement from the initial value, triggering the
delivery of an ontimer intrinsic event on transition from a value of one to zero. If
the user has not exited the card at the time of timer expiration, an ontimer intrinsic
event is delivered to the card. Note that it is a WML syntax error to have more than
one timer in a card.

The timer timeout value is specified in units of one-tenth (1/10) of a second.
However, note that you should not expect a particular timer resolution. It is thus
recommended that in applications where exact timer resolution is required, you
provide the user agent with another means to invoke a timer’s task. Note also that if
the value of the timeout is not a positive integral number, the user agent ignores the
timer element. A timeout value of zero (0) disables the timer.

Contained elements

None.

WML elements WML Reference

75

Syntax

The attributes of the timer element are explained in the following table.

Attribute Explanation

name=nmtoken This attribute specifies the name of the variable to
be set with the value of the timer. The name
variable’s value is used to set the timeout period
upon timer initialization. The variable named by
the name attribute will be set with the current
timer value when the card is exited or when the
timer expires. For example, if the timer expires,
the name variable is set to a value of “0”.

value=vdata This attribute indicates the default value of the
variable named in the name attribute. When the
timer is initialized and the variable named in the
name attribute is not set, the name variable is
assigned the value specified in the value attribute.
If the name variable already contains a value, the
value attribute is ignored. If the name attribute is
not specified, the timeout is always initialized to
the value specified in the value attribute.

This attribute is required.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [42.]

The following deck will display a text message for approximately 10 seconds and
then go to the URL /next.

<wml>

<card ontimer="/next">

<timer value="100"/>

<p>

Hello World!

</p>

</card>

</wml>

The same example could be implemented as:

<wml>

<card>

<onevent type="ontimer">

<go href="/next"/>

</onevent>

<timer value="100"/>

<p>

WML Reference WML elements

76

Hello World!

</p>

</card>

</wml>

The following example illustrates how a timer can initialize and re-use a counter.
Each time the card is entered, the timer is reset to the value of the variable t. If t is
not set, the timer is set to a value of 5 seconds.

<wml>

<card ontimer="/next">

<timer name="t" value="50"/>

<p>

Hello World!

</p>

</card>

</wml>

Text formatting

This section introduces the elements and constructs related to text formatting.

White space

The way that WML handles white space and line breaks is based on XML and
assumes the default white space handling rules. This means that the WML user
agent converts multiple contiguous spaces, returns and lines into a single space
between words.

Emphasis elements

The emphasis elements specify text emphasis markup information. The emphasis
tags are explained in the following table.

Tag Explanation

em Render with emphasis.

strong Render with strong emphasis.

i Render with an italic font.

b Render with a bold font.

u Render with underline.

big Render with a large font.

small Render with a small font.

WML elements WML Reference

77

Use the strong and em tags where possible. It is not recommended to use b, i, and
u tags except where explicit control over text presentation is required.

Example [43.]

The following WML illustrates the use of text emphasis tags.

<wml>

<card id="card1">

<p>

A

<u>

Demonstration

</u>

of Nokia's

<i>

 Wireless Application Protocol

 </i>

 Toolkit

</p>

</card>

</wml>

The deck generates the following user interface in the user agent:

Card with text formatting.

Note that the user agent can only display a few lines at a time so you must scroll
down to see the last lines of the card.

br element

Description

The br element establishes the beginning of a new line. The user agent must break
the current line and continue on the following line. User agents should do best
effort to support the br element in tables (see "table element" on page 79).

Contained elements

None.

WML Reference WML elements

78

Syntax

The line break attributes are explained in the following table.

Attribute Explanation

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

p element

Description

The p element establishes both the line wrap and alignment parameters for a
paragraph. If the text alignment is not specified, it defaults to left. If the wrap
mode is not specified, it is identical to the line-wrap mode of the previous
paragraph in the current card. Empty paragraphs, such as an empty element or an
element with only insignificant white space, should be considered as insignificant
and ignored by visual user agents. Insignificant paragraphs do not impact line-wrap
mode. If the first p element in a card does not specify a line-wrap or alignment
mode, that mode defaults to the initial mode of the card. The user agent must insert
a line break into the text flow between significant p elements.

You may remove insignificant paragraphs before delivering the document to the
user agent.

WML has two line-wrapping modes for visual user agents: breaking (or wrapping)
and non-breaking (or non-wrapping). The treatment of a line too long to fit on the
screen is specified by the current line-wrap mode.

 If mode="wrap" is specified, the line is word-wrapped onto multiple lines. In
this case, line breaks should be inserted into a text flow as appropriate for
presentation on an individual device.

 If mode="nowrap" is specified, the line is not wrapped. automatically. In this
case, the user agent must provide a mechanism to view entire non-wrapped
lines, such as horizontal scrolling or some other user-agent specific mechanism.

Any space between words is a legal line break point. The non-breaking space entity
(or) indicates that the user agent must not treat the space as a space
between words. It is recommended that you use to prevent unwanted line
breaks. The soft-hyphen character entity (­ or ­) indicates a location that
may be used by the user agent for a line break. If a line break occurs at a soft-
hyphen, the user agent inserts a hyphen character (-) at the end of the line. In
all other operations, the soft-hyphen entity is ignored. Note also that a user agent
may ignore soft-hyphens when formatting text lines.

WML elements WML Reference

79

Contained elements

a

anchor

br

do

em|strong|b|i|u|big|small

fieldset

img

input

select

table

Syntax

The attributes are explained in the following table.

Attribute Explanation

align=

(left|right|center)

This attribute specifies the text alignment mode
for the paragraph. You can align the text center,
left or right. The default alignment is left. If not
explicitly specified, the text alignment is set to the
default alignment.

mode=(wrap|nowrap) This attribute specifies the line-wrap mode for the
following paragraph.

Wrap specifies breaking text mode. Nowrap
specifies non-breaking text mode.

If not explicitly specified, the line wrap mode is
identical to the line wrap mode of the previous
paragraph in the text flow of a card.

The default mode for the first paragraph in a card
is wrap.

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [44.]

The following example illustrates centering and left-justifying text as well as the
difference between wrapping and not wrapping text.

WML Reference WML elements

80

<p align="center">

centered text

</p>

<p align="left">

left-justified

</p>

<p mode="wrap">

This text is wrapped to the next line.

</p>

<p mode="nowrap">

This text is truncated.

</p>

table element

Description

The table element is used together with the tr and td elements to create sets of
aligned columns of text and images in a card. You cannot nest table elements. The
table elements determine the structure of the columns. The elements separate
content into columns, but do not specify column or intercolumn widths. The user
agent should do its best effort to present the information of the table in a manner
appropriate to the device.

The alignment of the text and images within a column is specified by the align
attribute. You can align the contents of a column center, left, or right. The align
attribute value is interpreted as a list of alignment designations, one for each
column. You specify center alignment with the value "C", left alignment with the
value "L", and right alignment with the value "R". The first designator in the list
applies to the first column, the second designator to the second column, and so on.
The default alignment is applied for any column for which an alignment designation
is omitted. For left-to-right languages, the default alignment is left. For right-to-left
languages, the default alignment is right.

You must use the columns attribute to specify the number of columns for the row
set. The user agent must create a row set with exactly the number of columns
specified by the columns attribute value. If the actual number of columns in a row
is less than the value specified in the columns attribute, the row must be effectively
padded with empty columns. The orientation of the table depends on the language:
for left-to-right languages, the leftmost column is the first column in the table.
Columns are added to the right side of a row to pad left-to-right tables. Columns
are added to the left side of a row to pad right-to-left tables.

If the actual number of columns in a row is greater than the value specified by the
columns attribute, the extra columns of the row must be aggregated into the last
column, such that the row contains exactly the number of columns specified. A
single inter-word space must be inserted between two cells that are being
aggregated.

WML elements WML Reference

81

Depending on the display characteristics, the user agent may create aligned columns
for each table, or may use a single set of aligned columns for all tables in a card. To
ensure the narrowest display width, the user agent should determine the width of
each column from the maximum width of the text and images in that column. A
non-zero width gutter must be used to separate each non-empty column.

Contained elements

tr +

Syntax

The attributes are explained in the following table.

Attribute Explanation

title=vdata This attribute specifies a title for this element,
which may be used in the presentation of this
object.

align=cdata This attribute specifies the layout of text and
images within the columns of a row set. You can
align the contents of a column center, left, or
right. The attribute value is interpreted as a list of
alignment designations, one for each column. You
specify center alignment with the value "C", left
alignment with the value "L", and right alignment
with the value "R".

columns=number This attribute specifies the number of columns for
the row set. The user agent must create a row set
with exactly the number of columns specified by
the attribute value. Note that it is a WML syntax
error to specify a value of zero ("0").

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

Example [45.]

The following example contains a card with a table that has six rows and three cells
of data in each row. On rows two through 6, the second cell contains a wireless
bitmap.

WML Reference WML elements

82

<wml>

<card id="card1" title="Weather Forecast">

<p>

<table columns="3">

<tr>

<td>Day</td><td>Wthr</td><td>Temp</td>

</tr>

<tr>

<td>M 6/7</td><td></td>

<td>25' C</td>

</tr>

<tr>

<td>T 6/8</td><td><img src="partcldy.wbmp" alt="part

cldy"/></td>

<td>27' C</td>

</tr>

<tr>

<td>W 6/9</td><td><img src="cloudy.wbmp"

alt="cloudy"/></td>

<td>24' C</td>

</tr>

<tr>

<td>T 6/10</td><td></td>

<td>28' C</td>

</tr>

<tr>

<td>F 6/11</td><td></td>

<td>29' C</td>

</tr>

</table>

</p>

</card>

</wml>

The deck generates the following user interface in the user agent (shown in a 6110
model phone):

tr element

Description

The tr element is used as a container to hold a single table row. Table rows may be
empty (for example, all the cells in the row are empty). Empty rows are significant
and must not be ignored.

WML elements WML Reference

83

Contained elements

td +

Syntax

The attributes are explained in the following table.

Attribute Explanation

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

td element

Description

The td element is used as a container to hold a single table cell data within a table
row. Table data cells may be empty. Empty cells are significant, and must not be
ignored. The user agent should do a best effort to deal with multiple line data cells
that may result from using images or line breaks.

Contained elements

a
anchor
br
em|strong|b|i|u|big|small

img

Syntax

The attributes are explained in the following table.

Attribute Explanation

xml:lang See "Common attributes" on page 23.

id See "Common attributes" on page 23.

class See "Common attributes" on page 23.

WML Reference WML elements

84

85

Appendix A

Examples

This Appendix introduces two very general examples of WML.

Using variables

Example [46.]

The following example demonstrates how to reference variables and set variables as
a side effect of navigation.

This example illustrates the use of the following WML elements:
card

do

go

prev

setvar

onevent

refresh

The example illustrates the use of the following attribute:
newcontext

WML code

<!—deck1.wml -->

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

<card id="card1" title="First Card" newcontext="true">

<p>

Card 1 ...

<!-- The following variables will not be defined

 until the other cards in this deck are entered.

 -->

WML Reference Examples

86

card1 var1 = $(card1_var1)

card2 var1 = $(card2_var1)

card3 var1 = $(card3_var1)

<do type="accept" label="Next Card">

<go href="#card2">

<setvar name="card1_var1" value="val_1"/>

</go>

</do>

</p>

</card>

<card id="card2" title="Second Card">

<p>

Card 2 ...

card1 var1 = $(card1_var1)

card2 var1 = $(card2_var1)

card3 var1 = $(card3_var1)

<do type="accept" label="First Card">

<go href="#card1"/>

</do>

<do type="accept" label="Third Card">

<go href="#card3">

<setvar name="card2_var1" value="val_2"/>

</go>

</do>

<do type="prev" label="Previous Card">

<prev/>

</do>

</p>

</card>

<card id="card3" title="Third Card">

<onevent type="onenterforward">

<refresh>

<setvar name="card3_var1" value="val_3"/>

</refresh>

</onevent>

<p>

Card 3 ...

card1 var1 = $(card1_var1)

card2 var1 = $(card2_var1)

card3 var1 = $(card3_var1)

<do type="prev" label="Previous">

<prev/>

</do>

</p>

</card>

</wml>

Examples WML Reference

87

Explanation

In the user agent, this example generates the following user interface when you
enter the deck (you may need to scroll down to see the entire screen, as shown in
this example on a 6150 model phone):

Note that none of the variables has a value at this stage.

By pressing the Options button, you can select the Next Card.

Press the Select button to choose the Next Card and go to the second card of the
deck.

Note that now the variable card1 var1 has the value val_1 but the other two
variables do not have values yet.

WML Reference Examples

88

Pressing Options sends you to the options card specified by the doelements in
card2:

You can now navigate to the first or third card:

 Use the button with the up and down arrow to select the card that you want to
display.

 Press Select.

When you enter the third card in the deck, it will display all three variables with
their values.

You can now navigate back to the first card by pressing the Back button twice.
Now the first card contains values for all three variables:

Task shadowing and inter-deck navigation

Example [47.]

The next two example decks demonstrate how to implement card and deck task
shadowing and inter-deck navigation in WML services. They also illustrate the use
of relative URLs.

The example illustrates the use of the following WML elements:

access

head

meta

template

noop

Examples WML Reference

89

WML code

<!-- deck2a.wml -->

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

<template>

<do type="prev" name="Previous" label="Previous">

<prev/>

</do>

</template>

<card id="card1" title="First Card" newcontext="true">

<p>

Card 1 ...

<do type="accept" label="Next Card">

<go href="#card2"/>

</do>

<!-- Must override the DO/PREV in the template to

 prevent the PREV element from going back to

 the previous deck

-->

<do type="prev" name="Previous">

<noop/>

</do>

</p>

</card>

<card id="card2" title="Second Card">

<p>

Card 2 ...

<do type="accept" label="Next Card">

<go href="#card3"/>

</do>

</p>

</card>

<card id="card3" title="Third Card">

<p>

Card 3 ...

<!-- NOTE: the following DO element will go to a new

 deck. The name of this deck is embedded

 in the URL.

-->

<do type="accept" label="Next Deck">

<go href="deck2b.wml"/>

</do>

</p>

</card>

</wml>

WML Reference Examples

90

Explanation

When you navigate to the first card of the deck, the card displays only the Next
Card soft key, since the Previous item described in the template has been
overridden with a Previous item in the card specifying a noop task. (Note that this
example is shown on a 6110 model phone.)

Pressing Next Card sends you to the second card of the deck. The card contains
the Next Card item specified in the card and the Previous item specified in the
template:

Pressing Next Card sends you to the third card. The card contains the Next Deck
item specified in the card and the Previous item specified in the template:

The Next Deck menu item allows you to navigate to deck2b.wml, which contains a
Previous soft key, allowing you to navigate to the card you visited last:

Examples WML Reference

91

Summary of examples

The following table lists the examples used in this guide and the page on which you
can them.

Example number Page

Example [1.] 6

Example [2.] 6

Example [3.] 7

Example [4.] 7

Example [5.] 8

Example [6.] 8

Example [7.] 9

Example [8.] 9

Example [9.] 12

Example [10.] 13

Example [11.] 15

Example [12.] 15

The first WML example [13.]

17

Example [14.] 20

Example [15.] 20

Example [16.] 25

Example [17.] 28

Example [18.] 30

Example [19.] 30

Example [20.] 32

Example [21.] 34

Example [22.] 37

Example [23.] 39

Example number Page

Example [24.] 39

Example [25.] 41

Example [26.] 42

Example [27.] 43

Example [28.] 44

Override example [29.] 45

Example [30.] 48

Example [31.] 49

Example [32.] 50

Example [33.] 51

Example [34.] 53

Example [35.] 60

Example [36.] 63

Example [37.] 65

Example [38.] 67

Example [39.] 69

Example [40.] 71

Example [41.] 74

Example [42.] 75

Example [43.] 77

Example [44.] 79

Example [45.] 81

Example [46.] 85

Example [47.] 88

WML Reference Examples

92

93

Appendix B

WML document type
definition

This Appendix provides the WML document type definition (DTD).

<!--
Wireless Markup Language (WML) Document Type Definition.

Copyright Wireless Application Protocol Forum Ltd., 1998,1999.
 All rights reserved.

WML is an XML language. Typical usage:
 <?xml version="1.0"?>
 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">
 <wml>
 ...
 </wml>

Terms and conditions of use are available from the Wireless
Application Protocol Forum Ltd. web site at
http://www.wapforum.org/docs/copyright.htm.
-->

<!ENTITY % length "CDATA"> <!-- [0-9]+ for pixels or [0-9]+"%" for
 percentage length -->
<!ENTITY % vdata "CDATA"> <!-- attribute value possibly containing
 variable references -->
<!ENTITY % HREF "%vdata;"> <!-- URI, URL or URN designating a
hypertext
 node. May contain variable references
-->
<!ENTITY % boolean "(true|false)">
<!ENTITY % number "NMTOKEN"> <!-- a number, with format [0-9]+ -->
<!ENTITY % coreattrs "id ID #IMPLIED
 class CDATA #IMPLIED">

<!ENTITY % emph "em | strong | b | i | u | big | small">
<!ENTITY % layout "br">

<!ENTITY % text "#PCDATA | %emph;">

<!-- flow covers "card-level" elements, such as text and images -->
<!ENTITY % flow "%text; | %layout; | img | anchor | a | table">

<!-- Task types -->
<!ENTITY % task "go | prev | noop | refresh">

<!-- Navigation and event elements -->
<!ENTITY % navelmts "do | onevent">

WML Reference WML document type definition

94

<!--================ Decks and Cards ================-->

<!ELEMENT wml (head?, template?, card+)>
<!ATTLIST wml
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!-- card intrinsic events -->
<!ENTITY % cardev
 "onenterforward %HREF; #IMPLIED
 onenterbackward %HREF; #IMPLIED
 ontimer %HREF; #IMPLIED"
 >

<!-- card field types -->
<!ENTITY % fields "%flow; | input | select | fieldset">

<!ELEMENT card (onevent*, timer?, (do | p)*)>
<!ATTLIST card
 title %vdata; #IMPLIED
 newcontext %boolean; "false"
 ordered %boolean; "true"
 xml:lang NMTOKEN #IMPLIED
 %cardev;
 %coreattrs;
 >

<!--================ Event Bindings ================-->

<!ELEMENT do (%task;)>
<!ATTLIST do
 type CDATA #REQUIRED
 label %vdata; #IMPLIED
 name NMTOKEN #IMPLIED
 optional %boolean; "false"
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT onevent (%task;)>
<!ATTLIST onevent
 type CDATA #REQUIRED
 %coreattrs;
 >

<!--================ Deck-level declarations ================-->

<!ELEMENT head (access | meta)+>
<!ATTLIST head
 %coreattrs;
 >

<!ELEMENT template (%navelmts;)*>
<!ATTLIST template
 %cardev;
 %coreattrs;
 >

<!ELEMENT access EMPTY>
<!ATTLIST access
 domain CDATA #IMPLIED
 path CDATA #IMPLIED
 %coreattrs;
 >

<!ELEMENT meta EMPTY>
<!ATTLIST meta
 http-equiv CDATA #IMPLIED
 name CDATA #IMPLIED
 forua %boolean; #IMPLIED
 content CDATA #REQUIRED
 scheme CDATA #IMPLIED
 %coreattrs;
 >

WML document type definition WML Reference

95

<!--================ Tasks ================-->

<!ELEMENT go (postfield | setvar)*>
<!ATTLIST go
 href %HREF; #REQUIRED
 sendreferer %boolean; "false"
 method (post|get) "get"
 accept-charset CDATA #IMPLIED
 %coreattrs;
 >

<!ELEMENT prev (setvar)*>
<!ATTLIST prev
 %coreattrs;
 >

<!ELEMENT refresh (setvar)*>
<!ATTLIST refresh
 %coreattrs;
 >

<!ELEMENT noop EMPTY>
<!ATTLIST noop
 %coreattrs;
 >

<!--================ postfield ================-->

<!ELEMENT postfield EMPTY>
<!ATTLIST postfield
 name %vdata; #REQUIRED
 value %vdata; #REQUIRED
 %coreattrs;
 >

<!--================ variables ================-->

<!ELEMENT setvar EMPTY>
<!ATTLIST setvar
 name %vdata; #REQUIRED
 value %vdata; #REQUIRED
 %coreattrs;
 >

<!--================ Card Fields ================-->

<!ELEMENT select (optgroup|option)+>
<!ATTLIST select
 title %vdata; #IMPLIED
 name NMTOKEN #IMPLIED
 value %vdata; #IMPLIED
 iname NMTOKEN #IMPLIED
 ivalue %vdata; #IMPLIED
 multiple %boolean; "false"
 tabindex %number; #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT optgroup (optgroup|option)+ >
<!ATTLIST optgroup
 title %vdata; #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT option (#PCDATA | onevent)*>
<!ATTLIST option
 value %vdata; #IMPLIED
 title %vdata; #IMPLIED
 onpick %HREF; #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

WML Reference WML document type definition

96

<!ELEMENT input EMPTY>
<!ATTLIST input
 name NMTOKEN #REQUIRED
 type (text|password) "text"
 value %vdata; #IMPLIED
 format CDATA #IMPLIED
 emptyok %boolean; "false"
 size %number; #IMPLIED
 maxlength %number; #IMPLIED
 tabindex %number; #IMPLIED
 title %vdata; #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT fieldset (%fields; | do)* >
<!ATTLIST fieldset
 title %vdata; #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT timer EMPTY>
<!ATTLIST timer
 name NMTOKEN #IMPLIED
 value %vdata; #REQUIRED
 %coreattrs;
 >

<!--================ Images ================-->

<!ENTITY % IAlign "(top|middle|bottom)" >

<!ELEMENT img EMPTY>
<!ATTLIST img
 alt %vdata; #REQUIRED
 src %HREF; #REQUIRED
 localsrc %vdata; #IMPLIED
 vspace %length; "0"
 hspace %length; "0"
 align %IAlign; "bottom"
 height %length; #IMPLIED
 width %length; #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!--================ Anchor ================-->

<!ELEMENT anchor (#PCDATA | br | img | go | prev | refresh)*>
<!ATTLIST anchor
 title %vdata; #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT a (#PCDATA | br | img)*>
<!ATTLIST a
 href %HREF; #REQUIRED
 title %vdata; #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!--================ Tables ================-->

<!ELEMENT table (tr)+>
<!ATTLIST table
 title %vdata; #IMPLIED
 align CDATA #IMPLIED
 columns %number; #REQUIRED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

WML document type definition WML Reference

97

<!ELEMENT tr (td)+>
<!ATTLIST tr
 %coreattrs;
 >

<!ELEMENT td (%text; | %layout; | img | anchor | a)*>
<!ATTLIST td
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!--================ Text layout and line breaks ================-->

<!ELEMENT em (%flow;)*>
<!ATTLIST em
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT strong (%flow;)*>
<!ATTLIST strong
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT b (%flow;)*>
<!ATTLIST b
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT i (%flow;)*>
<!ATTLIST i
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT u (%flow;)*>
<!ATTLIST u
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT big (%flow;)*>
<!ATTLIST big
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT small (%flow;)*>
<!ATTLIST small
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ENTITY % TAlign "(left|right|center)">
<!ENTITY % WrapMode "(wrap|nowrap)" >
<!ELEMENT p (%fields; | do)*>
<!ATTLIST p
 align %TAlign; "left"
 mode %WrapMode; #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ELEMENT br EMPTY>
<!ATTLIST br
 xml:lang NMTOKEN #IMPLIED
 %coreattrs;
 >

<!ENTITY quot """> <!-- quotation mark -->
<!ENTITY amp "&#38;"> <!-- ampersand -->
<!ENTITY apos "'"> <!-- apostrophe -->

WML Reference WML document type definition

98

<!ENTITY lt "&#60;"> <!-- less than -->
<!ENTITY gt ">"> <!-- greater than -->
<!ENTITY nbsp " "> <!-- non-breaking space -->
<!ENTITY shy "­"> <!-- soft hyphen (discretionary hyphen) -->
<!--
Copyright Wireless Application Protocol Forum Ltd., 1998,1999.
 All rights reserved.
-->

99

Appendix C

WML quick reference

Header

<?xml version="1.0"?>

Decks and cards

<wml xml:lang="lang">

content

</wml>

<card id="name" title="label" newcontext="boolean" ordered="boolean"

onenterforward="href" onenterbackward="href" ontimer="href">

content

</card>

<template onenterforward="href" onenterbackward="href" ontimer="href">

content

</template>

<head> content </head>

<access domain="domain" path="path" />

<meta content="value" scheme="format"/>

Events

<do type="type" label="label" name="name" optional="boolean">

task

</do>

<onevent type="type"> task </onevent>

<postfield name="value" value="value">

WML Reference WML quick reference

100

Tasks

<go href="href" sendreferer="boolean" method="method"

accept-charset="charset" >

content

</go>

<prev> content </prev>

<noop/>

<refresh> content </refresh>

User input

<input name="variable" title="label" type="type" value="value"

value="default" format="mask" emptyok="boolean" size="n"

maxlength="n" tabindex="n"/>

<select title="label" multiple="boolean" name="variable" value="default"

iname="index_var" ivalue="default" tabindex="n">

content

</select>

<option title="label" value="value" onpick="href">

content

</option>

<optgroup title="label"> content </optgroup>

<fieldset title="label"> content </fieldset>

Anchors

<anchor title="label"> task text</anchor>

 href="href" text

Images

<img alt="text" src="url" localsrc="icon" align="alignment"

height="n" width="n" vspace="n" hspace="n"/>

Timers

<timer name="variable" value="value"/>

Variables

<setvar name="name" value="value"/>

WML quick reference WML Reference

101

Layout and formatting

<p align="alignment" mode="wrapmode"/>

<table title="value" align="alignment" columns="number"/>

<tr> </tr>

<td>text layout img anchor a </td>

 text

 text

 text

<i> text </i>

<u> text </u>

<big> text </big>

<small> text </small>

Special characters

" quotation mark

& ampersand

' apostrophe

< less than

> greater than

 non-breaking space

­ soft hyphen (discretionary hyphen)

WML Reference WML quick reference

102

103

Glossary

The following terms and conventions are used throughout this document.

American Standard Code for Information Interchange (ASCII)

ASCII is a standard developed by the American National Standards Institute
(ANSI) to define computer-intelligible values for characters used in text. The
ASCII set of 128 characters includes uppercase and lowercase letters of the
English alphabet, numbers, punctuation, and 33 control codes (such as tab, bell,
carriage return). ASCII uses 7 bits to represent each character. You may see
ASCII characters identified by a decimal number from 0 to 127.

The standard ASCII character set uses just 7 bits for each character,
consequently one bit of each octet is not used. Larger character sets, known as
extended ASCII or high ASCII, use all 8 bits, allowing as many as 128
additional characters to be defined. Numerous extensions to ASCII have been
devised and quite a few have become national or international standards.
Notable among them is a family of international standards, ISO-8859, that
defines extensions appropriate to certain language groups which ASCII alone
cannot support. The most important member of this group is ISO-8859-1,
known as ISO Latin-1, which provides for the languages of western Europe.

Attribute

A syntactical component of a WML element which is often used to specify a
characteristic quality of an element, other than type or content.

Author

An author is a person or program that writes or generates WML, WMLScript
or other content.

Bandwidth

Bandwidth is the capacity that a telecommunications medium has for carrying
data. For analog or voice communication, bandwidth is measured in the
difference between the upper and lower transmission frequencies expressed in
cycles per second, or hertz (Hz). For digital communication, bandwidth and
transmission speed are usually treated as synonyms and measured in bits per

WML Reference Glossary

104

second. The actual speed or transmission time of any message or file from
origin to destination depends on a number of factors. Most Internet
transmissions travel at very high speed on fiber optic lines most of the way.
Switching en route, lower bandwidths on local loops at both ends, and server
processing time add to the overall transmission time.

Byte

A sequence of consecutive bits treated as a unit. On almost all modern
computers, a byte is comprised of 8 bits, though other numbers were formerly
encountered. To avoid ambiguity, the term octet is used in the language of
international standards to refer to an 8-bit unit.

Large amounts of memory are indicated in terms of kilobytes (1,024 bytes),
megabytes (1,048,576 bytes), and gigabytes (approximately 1 billion bytes). A
disk that can hold 1.44 megabytes, for example, is capable of storing
approximately 1.4 million ASCII characters, or about 3,000 pages of
information.

Bytecode

Content encoding where the content is typically a set of low-level opcodes,
that is, instructions, and operands for a targeted piece of hardware or virtual
machine.

Card

A single WML navigational and user interface unit. A card may contain
information to present to the user or instructions for gathering user input, for
example.

Character Encoding

When used as a verb, character encoding refers to conversion between sequence
of characters and a sequence of bytes. When used as a noun, character encoding
refers to a method for converting a sequence of bytes to a a sequence of
characters. Typically, WML document character encoding is captured in
transport headers attributes, meta information placed within a document, or
the XML declaration defined by the XML specification.

Client

A device or application that initiates a request for connection with a server.

Glossary WML Reference

105

Common Gateway Interface (CGI)

A programming language that enables you to use forms on your web site.

Concatenation

Concatenating two strings means sticking them together, one after another, to
make a new string. For example, the string “foo” concatenated with the string
“bar” gives the string “foobar”.

Content

Subject matter stored or generated at a web server. Content is typically
displayed or interpreted by a user agent in response to a user request.

Content encoding

When used as a verb, content encoding indicates the act of converting content
from one format to another. Typically the resulting format requires less
physical space than the original, is easier to process or store and/or is
encrypted. When used as a noun, content encoding specifies a particular format
or encoding standard or process.

Content format

Actual representation of content.

Deck

A collection of WML cards. A WML deck is also an XML document.

Device

A network entity that is capable of sending and receiving packets of
information and has a unique device address. A device can act as a client or a
server within a given context or across multiple contexts. For example, a device
can service a number of clients as a server while being a client to another server.

Document Type Definition (DTD)

The document type definition states which elements can be nested within
others. A DTD defines:

— The names and contents of all elements that are permissible in a certain
document.

WML Reference Glossary

106

— How often an element may appear.

— The order in which the elements must appear.

— Whether the start or end tag may be omitted.

— The contents of all elements, that is, the names of the other generic
identifiers that are allowed to appear inside them.

— The attributes and their default values.

— The names of the reference symbols that may be used.

Element

Elements specify all the markup and structural information for a WML deck.
Elements may contain a start tag, content and an end tag.

Extensible Markup Language (XML)

The Extensible Markup Language is a World Wide Web Consortium (W3C)
standard for Internet markup languages, of which WML is one such language.
XML is a restricted subset of SGML.

Hypertext transfer protocol (HTTP)

HTTP is the underlying protocol used by the World Wide Web. HTTP defines
how messages are formatted and transmitted, and what actions Web servers and
browsers should take in response to various commands. For example, when
you enter an URL in your browser, an HTTP command is sent to the web
server directing it to retrieve and transmit the requested web page.

JavaScript™

A de facto standard language that can be used to add dynamic behaviour to
HTML documents.

Markup

Text added to the data of a document to convey information on it. There are
four different kinds of markup: descriptive markup (tags), references, markup
declarations, and processing instructions.

Rendering

Formatting and presenting information.

Glossary WML Reference

107

Resource

A network data object or service that can be identified by an URL. Resources
may be available in multiple representations (for example, multiple languages,
data formats, size and resolutions) or vary in other ways.

Server

A device or application that passively waits for connection requests from one
or more clients. A server may accept or reject a connection request from a
client.

Standardized Generalized Markup Language (SGML)

The Standardized Generalized Markup Language is a general-purpose language
for domain-specific markup languages. SGML is defined in the ISO8879
standard.

Tag

A tag is a generic term for a language element descriptor. WML consists of
content surrounded by formatting tags. Each tag is enclosed in a pair of angle
brackets:
< and >. Tags are generally used in pairs, one to start the element and one to
end it.

Terminal

A device providing the user with user agent capabilities, including the ability to
request and receive information. Also called a mobile terminal or mobile
station.

Transcode

The act of converting from one character set to another, for example,
conversion from UCS-2 to UTF-8.

Unicode

An encoding scheme for written characters and text. Unlike ASCII, which uses
7 bits for each character, Unicode uses 16 bits, which means that it can
represent more than 65,000 unique characters, a huge increase over ASCII’s
code capacity of 128 characters. Unicode was authored and is maintained by
the Unicode Consortium, a group comprised of major corporations and
institutions involved in international computing. The character repertory and
the codes assigned in Unicode are identical to those specified by ISO 10646, the
international Universal Character Set (UCS) standard.

WML Reference Glossary

108

The Unicode Standard, Version 2.0 defines codes for characters used in every
major language written today. In all, the Unicode standard currently defines
codes for nearly 39,000 characters from the world’s alphabetic, ideographic and
syllabic scripts and symbol collections. The Unicode repertory was derived
from many pre-existing character set standards to which previously
unstandardized characters have been added. In particular, the first 256 code
values are identical to those of ISO 8859-1 extended to 16 bits. Unicode values
are displayed as four hex digits preceded by U+. For example, U+0041 is Latin
uppercase A.

Uniform Resouce Identifier (URI)

Uniform Resource Identifiers (URI) identify resources in the web: documents,
images, downloadable files, services, electronic mailboxes, and other resources.
A URI can refer to an Uniform Resource Locator (URL) or an Uniform
Resource Name (URN).

Uniform Resource Locator (URL)

URL stands for Uniform Resource Locator and is an address referring to a
document on the Internet. The syntax of an URL consists of three elements:

— The protocol, or the communication language, that the URL uses.

— The domain name, or the exclusive name that identifies a web site.

— The pathname of the file to be retrieved.

User

A user is a person who interacts with a user agent to view, hear, or otherwise
use a resource.

User agent

A user agent is any piece of software or physical device that interprets WML,
WMLScript, WTAI or other resources. They may include textual browsers,
voice browsers and search engines, for example.

Web server

The server on which a given resource resides or is to be created. Often referred
to as an origin server or an HTTP server.

Glossary WML Reference

109

Wireless Application Environment (WAE)

The Wireless Application Environment specifies a general-purpose application
environment based fundamentally on World Wide Web technologies and
philosophies. WAE specifies an environment that allows operators and service
providers to build applications and services that can reach a wide variety of
different platforms. WAE is part of the Wireless Application Protocol.

Wireless Application Protocol (WAP)

The Wireless Application Protocol specifies an application framework and
network protocols for wireless devices such as mobile phones, pagers, and
personal digital assistants (PDAs). The WAP specifications extend mobile
networking technologies (such as digital data networking standards) and
Internet technologies (such as XML, URLs, scripting, and various content
formats).

Wireless Markup Language (WML)

The Wireless Markup Language is a markup language based on XML and is
intended for use in specifying content and user interface for narrowband
devices, including mobile phones and pagers.

Wireless Markup Language Script (WMLScript)

The Wireless Markup Language Script is a scripting language used to program
the mobile device. WMLScript is an extended subset of the JavaScript™
scripting language.

Wireless Session Protocol (WSP)

The Wireless Session Protocol provides the upper-level application layer of
WAP with a consistent interface for two session services. The first is
connection-mode service that operates above a transaction layer protocol, and
the second is a connectionless service that operates above a secure or non-
secure datagram transport service.

WML Reference Glossary

110

111

Index

A
a element, 71

access element, 31

amp character, 11, 101

Ampersand character, 11, 101

anchor element, 70

apos character, 11, 101

Apostrophe character, 11, 101

Attributes, common, 23

B
b element, 76

big element, 76

Boolean data type, 8

br element, 77

Browser context, 20

C
Card, 17

card element, 26

Case sensitivity, 15

CDATA data type, 5

Character data types

CDATA, 5
id, 6
NMTOKEN, 5
PCDATA, 5

Character entities

decimal numeric, 11
hexadecimal numeric, 11
named, 11

Character set used in WML, 9

class attribute, 23

Common attributes

class, 23
id, 23
xml:lang, 23

Core WML data types, 5

D
Decimal numeric character entities, 11

Deck, 17

do element, 35

Document header, 24

Document identifiers, 24

Dollar sign character, 52

E
Elements, 14

a, 71
access, 31
anchor, 70
b, 76
big, 76
br, 77
card, 26
do, 35
em, 76
fieldset, 68
go, 46
head, 30
i, 76
img, 72
input, 56
meta, 33
noop, 50
onenterbackward, 40
onenterforward, 39

WML Reference Index

112

onevent, 42
onpick, 41
ontimer, 38
optgroup, 67
option, 64
p, 78
prev, 49
refresh, 50
select, 61
setvar, 51
small, 76
strong, 76
table, 80
td, 83
template, 29
timer, 74
tr, 82
u, 76
wml, 24

em element, 76

Emphasis data type, 9

escape conversion, 54

Extensible Markup Language, 1

F
fieldset element, 68

Flow data type, 7

Fragment anchor, 20

G
go task, 46

Greater than character, 12, 101

gt character, 12, 101

H
head element, 30

Hexadecimal numeric character entities,
11

History stack, 21

href data type, 8

I
i element, 76

id attribute, 23

id data type, 6

img element, 72

Inline data type, 7

input element, 56

L
Layout data type, 7

Less than character, 11, 101

lt character, 11, 101

M
meta element, 33

N
Named character entities, 11

Navigation history, 21

nbsp character, 12, 101

NMTOKEN data type, 5

noesc conversion, 55

Non-breaking space character, 12, 101

noop task, 50

Number data type, 8

O
onenterbackward event, 40

onenterforward event, 39

onevent element, 42

onpick event, 41

ontimer event, 38

optgroup element, 67

option element, 64

Overriding tasks, 44

P
p element, 78

PCDATA data type, 5

prev task, 49

Index WML Reference

113

Q
quot character, 11, 101

Quotation mark character, 11, 101

R
refresh task, 50

Related documents, 3

Relative URL, 20

S
select element, 61

setvar element, 51

SGML public identifier, 24

shy character, 12, 101

small element, 76

Soft hyphen character, 12, 101

Special characters of WML, 11

strong element, 76

T
table element, 80

Tag, 13

Task override, 44

Tasks, 46

td element, 83

template element, 29

Text data type, 7

Text formatting

emphasis, 76
line breaks, 77
p element, 78
table element, 80
td element, 83
text alignment, 77
tr element, 82
white space, 76

timer element, 74

tr element, 82

Typographical conventions, 2

U
u element, 76

unesc conversion, 55

Uniform Resource Locator (URL), 19

Using variables, 51

V
Variable conversions

escape, 54
noesc, 55
unesc, 55

Variables, 51, 53

naming, 52
setting, 53
substituting, 54
validating, 53

Vdata data type, 6

W
Wireless Markup Language, definition, 1

Wireless Session Protocol, 20

WML. See Wireless Markup Language

WML character set, 9

WML data types

boolean, 8
character data, 5
emphasis, 9
flow, 7
href, 8
inline, 7
layout, 7
length, 6
number, 8
text, 7
vdata, 6

wml element, 24

WML media type identifier, 24

WML syntax

attributes, 14
case sensitivity, 15
cdata section, 15
comments, 14
elements, 14

WML Reference Index

114

entities, 12
tags, 13
variables, 14

WSP. See Wireless Session Protocol

X
xml:lang attribute, 23

XML. See Extensible Markup Language

	Introduction
	Typographical conventions
	Related documents
	Documents included in the Nokia WAP Toolkit
	Other references

	Core WML data types
	Character data
	Length
	Vdata
	Flow, inline and layout
	Text
	Href
	Boolean
	Number
	Emphasis

	WML character set
	Reference Processing Model
	Character entities and special characters
	WML syntax

	First steps in WML
	Card and Deck
	Template
	WML and URLs
	Fragment anchors
	Relative URLs
	Browser context

	History

	WML elements
	Decks and cards
	Common attributes
	Document header
	wml element
	card element
	template element
	head element
	access element
	meta element

	Events
	do element
	ontimer event
	onenterforward event
	onenterbackward event
	onpick event
	onevent element
	postfield element
	Card and deck intrinsic events
	Card and deck task override

	Tasks
	go task
	prev task
	refresh task
	noop task

	Variables
	setvar element
	Naming variables
	Validating variables
	Restricting variable context
	Setting variables
	Substituting variables
	Parsing the variable substitution syntax

	User input
	input element
	select element
	option element
	optgroup element
	fieldset element

	Anchors, images and timers
	anchor element
	a element
	img element
	timer element

	Text formatting
	White space
	Emphasis elements
	br element
	p element
	table element
	tr element
	td element

	Examples
	Using variables
	Task shadowing and inter-deck navigation
	Summary of examples

	WML document type definition
	WML quick reference
	Glossary
	Index

