
DEVELOPER’S GUIDE 31

CHAPTER

6
Chapter 6Using the Install and

Licensing APIs

This chapter describes how to use the functions in the InterBase Install API as part of an
application install. It includes the following topics:

� A description of the Install API and its parts, including a list of the ten entry functions

� An overview of how to use the API to write an install

� Pseudocode for a recommended install

� A reference section with details of each function

� A list of error and warning numbers and their text

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

32 INTERBASE 6

About the InterBase Install API
InterBase provides developers with resources that greatly facilitate the process of
installing InterBase as part of an application install on the Win32 platform. It provides
mechanisms for an install that is completely silent. In addition, it allows you to interact
with users if desired, to gather information from them and to report progress and
messages back to them.

Using the API functions contained in ibinstall.dll, you can integrate the installation of your
own product with the deployment of an embedded copy of InterBase. The InterBase
portion of the install is silent: it does not display billboards and need not require
intervention from the end user.

Files in the Install API
The API consists of following files:

These files are all available on the InterBase CDROM. They are also copied as part of the
InterBase install when the DEV option is chosen at install time.

File Description

ibinstall.dll. A library of functions—the “install engine”

• An API that contains ten functions plus the full text of all InterBase error messages
and warnings

• Installed when any InterBase option is installed

ibinstall.h For C programmers:

• A header file that contains function declarations and related values, and a list of
error and warning messages and their numbers

• Installed with the IBDEV option

ibinstall.lib For C programmers:

• A library file that contains the list of functions in ibinstall.dll
• Installed with the IBDEV option

ibinstall.pas For Delphi and Pascal programmers:

• An Object Pascal source file that contains function declarations and related values
• Installed with the IBDEV option

TABLE 6.1 Files required for writing an InterBase install using the InterBase Install API

ABOUT THE INTERBASE INSTALL API

DEVELOPER’S GUIDE 33

What the Install API does
The functions in the InterBase Install API perform many of the steps that were previously
the responsibility of the developer:

� Performs preinstall checks: check for valid operating system, correct user permissions,
existing copies of InterBase, disk space, source and destination directories

� Logs all actions to a file called ib_install.log

� Creates the destination directory if necessary (and possible)

� Checks for option dependencies

� Copies all files, performing necessary version checks to avoid copying over newer
versions

� Creates needed registry entries and increases reference count of shared files

� On NT, installs the InterBase server as a service

� Installs the InterBase Guardian in the services Manager (Windows NT) or add the
Guardian to the Run section of the Registry (Windows 95/98)

� Modifies the TCP/IP Services file if necessary

� Writes the selected options into the uninstall file

The install handle
Each install instance has a unique handle that identifies it. This handle is a variable of
type OPTION_HANDLE (see page “Datatypes defined for the Install API” on page 36) that
you initialize to zero at the beginning of the InterBase install. Throughout this chapter,
this variable is referred to as handle, and its address is phandle. You are, of course, free
to name it what you will. Once you have passed it to isc_install_set_option(), it references
a data area where all the options for the current install are stored. You need not and
should not dereference handle directly. The install data is all maintained by the install
engine. You need only pass handle or a pointer to it—depending on the syntax of the
function you are calling—and the install engine does all the work for you.

You must pass handle to isc_install_set_option() before passing it to any of the other
functions, since isc_install_set_option() is the only function that accepts handle when its
value is zero. The others return an error.

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

34 INTERBASE 6

Error handling
Each of the functions in the InterBase Install API returns an error number as follows:

� If the function executes successfully, it returns zero (isc_install_success).

� If it completes with warnings, it returns a negative number that corresponds to a specific
warning message.

� If an error occurs, it returns a positive number that corresponds to a specific error
message.

You should check the return each time you call a function. If the return is nonzero, call
isc_install_get_message() to get the text of the error or warning. For example:

error = isc_install_precheck(handle, source_path, dest_path)

if(error)

isc_install_get_message(error, message, length(message))

The steps in “Overview of the process” do not explicitly remind you to do this. It is
assumed that you will do so as necessary.

Callback functions
The isc_install_execute() and isc_uninstall_execute() functions permit you to pass in
pointers to an error-handling function and to a status function, both of which are
supplied by you.

� The status function can pass status information to the end user and pass back a “cancel”
request from the user.

� You can use the error-handing function to specify a response to an error or warning and
to display message text to the end user.

The syntax of these functions must be as follows:

fp_status()

int (*fp_status)(int status, void *status_arg, const TEXT* act_desc)

fp_status() is a callback function supplied by you, the developer, that accepts an integer,
status, from 0 to 100, indicating percent of install/uninstall completed. When a pointer
to this function is passed to either isc_install_execute() or isc_uninstall_execute(), it
calls fp_status() at intervals and passes it a number indicating percent completion so that
you can display a status bar or other indicator to the end user.

ABOUT THE INTERBASE INSTALL API

DEVELOPER’S GUIDE 35

The act_desc parameter provides text that can be displayed as part of the progress
indicator.

status_arg is a pointer to optional user-defined data passed to isc_install_execute() or
isc_uninstall_execute().

Return Value The fp_status() function must return either 0 (continue) or 1 (abort).

fp_error()

int (*fp_error)(MSG_NO msg_no, void *status_arg, const TEXT* context)

fp_error() is a callback function that accepts an error number, msg_no, when a pointer
to it is passed to either isc_install_execute() or isc_uninstall_execute() as a parameter.

status_arg is a pointer to optional user-defined data passed to isc_install_execute() or
isc_uninstall_execute().

The context parameter provides additional information about the nature of the error that
can be passed on to the end user.

Return Value fp_error() processes the error message and returns one of three values:
isc_install_ fp_retry, isc_install_ fp_continue, or isc_install_ fp_abort.

IMPORTANT These callback functions can make calls only to isc_install_get_message(). The result is
undetermined if they attempt to call any other Install API function.

fp_error() returns Effect on calling function

abort Function fails

retry Function is called again

continue Function ignores the error and continues from the point where
the error occurred

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

36 INTERBASE 6

Datatypes defined for the Install API
The following datatypes are defined for the Install API functions:

Writing an InterBase install
“Overview of the process” below lists the steps to follow and issues to consider when
writing an InterBase install. The steps you use depend on whether you are writing a silent
install or an interactive install. Some steps are merely recommended rather than required,
such as Calling isc_clear_options() before proceeding with the rest of the install. Others
vary depending on whether you are also performing tasks such as writing an uninstall
program, creating icons, adding authorization codes, and starting the server.

Following the list of functions there is pseudocode that provides much of the same
information in code form.

IMPORTANT There must be only one InterBase server per machine. Although there are ways around
this, they are not recommended. It is particularly important to avoid putting a
SuperServer version of InterBase (V 5.0 and later) on a machine where a Classic server is
still installed.

Datatype Definition

OPTIONS_HANDLE void*

TEXT char

MSG_NO long

OPT unsigned long

FP_STATUS function pointer of type int (*fp_status)(int status, void *status_arg,
const TEXT* description)

FP_ERROR function pointer of type int (*fp_error)(MSG_NO msg_no, void *status_arg,
const TEXT* description)

TABLE 6.2 Datatypes defined for the InterBase Install API

WRITING AN INTERBASE INSTALL

DEVELOPER’S GUIDE 37

Overview of the process
1. The files that you need to develop and compile your application are in the

ib_install_dir\SDK\ directory if you installed InterBase on your development
system with the IB_DEV option. They are also on the InterBase CDROM in the
\SDK directory. Collect the following files:

- For C/C++ programmers: ibinstall.dll, ibinstall.lib, ibinstall.h

- For Delphi programmers: ibinstall.dll, ibinstall.pas

Place ibinstall.dll in the directory that will contain your executable after it is compiled.
Place the other files where your compiler can find them.

2. Declare a variable of type OPTIONS_HANDLE for handle and initialize it to 0
(a long INT). If you are writing a companion uninstall program, allocate an
array buffer for the uninstall file name.

3. If you need messages in a language other than English, call
isc_load_external_text() to load the error and warning messages.

4. For interactive installs only The next steps temporarily select a group of
options in order to check that there is a valid operating system, that no
Classic server is present, and that there is no InterBase server running. This
prevents the case where the end user answers several questions and then
finds that the install cannot be performed because of an invalid OS or the
presence of the Classic server:

- Call isc_install_set_option() with the following parameters:

isc_install_set_option(handle, INTERBASE)

If you will be installing a client but no server, substitute IB_CLIENT for INTERBASE.

- Call isc_install_precheck(handle, NULL, NULL)

- Call isc_install_clear_options().

5. In an interactive install, query users for a destination and desired options.

6. Call isc_install_set_option() once for each option to install. In an interactive
GUI setup, this would typically be invoked by a mouse click in a check box.

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

38 INTERBASE 6

7. Call isc_install_precheck() a second time. This time, provide the source and
destination path and selected options. isc_install_precheck() checks that the
destination directory exists and is writable. If the directory does not exist and
cannot be created, the function exits with an error. It also checks the
dependencies of the selected options and issues a warning if the selections
are incompatible or require options not selected. See page 45 for a further
description of this function.

8. Call isc_install_execute(), passing in handle, the source path, and the
destination path. If you have written functions to handle errors and display
status, you pass in pointers to these functions and optionally pointers to
context data as well. The last parameter is an optional pointer to a buffer
where the uninstall file name can be stored. If you are providing a
companion uninstall program, you must declare a text buffer for the name of
the uninstall file and pass in a pointer to it as the final argument for this
function. isc_install_execute() then performs the actual install.

The next steps are all optional.

9. When the install is complete, you can enable licensed functionality for the
product by calling functions in the Licensing API (iblicense.dll) and providing
certificate IDs and keys. If you do not do this, the end user must enter
certificate ID and key pairs (authorization codes) before starting the server.

10. Create shortcuts on the Start menu.

11. Start the server. You can do this only after providing valid certificate IDs and
keys.

A real-world example
The source code for the InterBase setup.exe is in ib_install_dir\Examples\Install. Since it uses
the InterBase Install API, it serves as an example of how to make use of the entry points
to write an install program.

THE INSTALL API FUNCTIONS

DEVELOPER’S GUIDE 39

The Install API functions
The InterBase Install API, ibinstall.dll, is a library of functions that facilitate the process of
installing and deploying InterBase as part of the developer’s own application. The table
below lists each entry point in ibinstall.dll with a brief description.

Following the table is a list of datatypes that are defined for these functions and a detailed
description of each function.

Function Description

isc_install_clear_options() Clears all options set by isc_install_set_option()

isc_install_execute() Performs the actual install, including file copying, registry entries,
saving uninstall options, and modifying the Services file if necessary

isc_install_get_info() Returns the requested information in human-readable form: a
suggested install directory, required disk space, an option name, or
option description

isc_install_get_message() Returns the text of the requested error or warning message number

isc_install_load_external_text() Loads the messages from the specified message file

isc_install_precheck() Performs a number of necessary check on the install environment,
such as checking for existing servers, disk space and access, user
permissions, and option dependencies

isc_install_set_option() Creates a handle to a list of selected install options; must be called
once for each option

isc_install_unset_option() Removes an option from the list of selected options obtained from
isc_install_set_option()

isc_uninstall_execute() Removes installed InterBase files (but see exceptions on page 50),
updates the registry, removes shares files that have a reference
count less than 1, uninstalls the InterBase Guardian and Server
services

isc_uninstall_precheck() Checks for running server, correct user permission, and validity of
the uninstall file

TABLE 6.3 Entry points in ibinstall.dll

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

40 INTERBASE 6

isc_install_clear_options()

Syntax MSG_NO isc_install_clear_options(OPTIONS_HANDLE *phandle)

Description isc_install_clear_options() clears all the options and other install data stored in handle
and sets handle to zero. It returns a warning if handle is zero.

It is good practice to call this function both at the beginning and at the end of an install
to free all resources. After calling isc_install_clear_options(), you must pass handle to
isc_install_set_option() at least once before passing it to any of the other install
functions.

Example To come after beta@@

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

Call isc_install_get_message() to obtain the error message when the result is nonzero.

Parameter Type Description

phandle OPTIONS_HANDLE* • Pointer to the handle of the list of options for the current install
• You must initialize this to zero before first use
• Handle is maintained by the install engine; you do not need to and

should not dereference it

THE INSTALL API FUNCTIONS

DEVELOPER’S GUIDE 41

isc_install_execute()

Syntax MSG_NO isc_install_execute(OPTIONS_HANDLE handle, TEXT *source_path,

TEXT *dest_path, FP_STATUS *fp_status, void *status_arg,

FP_ERROR *fp_error, void *error_arg, TEXT *uninst_file_name)

Parameter Type Description

handle OPTIONS_HANDLE • The handle to the list of options created by isc_install_set_option()
• isc_install_execute() returns an error if the value of handle is NULL

or zero

source_path TEXT* • The path where the files to be installed are located, typically
located on a CDROM

• isc_install_execute() returns an error if source_path is NULL or an
empty string

dest_path TEXT* • The path to the desired install location
• isc_install_execute() returns an error if dest_path is NULL or an

empty string

fp_status FP_STATUS* • A pointer to a callback function that accepts an integer from 0 to
100; see page 34 for more information

• May be NULL if no status information is required by the end user

status_arg void* • User-defined data to be passed to fp_status()
• Value is often NULL

fp_error FP_ERROR* • A pointer to a callback function that accepts an error number and
returns a mnemonic specifying whether isc_install_execute()
should abort, continue, or retry

error_arg void* • User-defined data to be passed to fp_error()
• Value is often NULL

uninst_file_name TEXT* • A pointer to a buffer containing the name of the uninstall file
• Can be set to NULL

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

42 INTERBASE 6

Description isc_install_execute() performs the actual install, including the following operations:

� Calls isc_install_precheck() to ensure that the install can be performed; if
isc_install_precheck() returns an error the install aborts

� Logs all actions to a temporary file called ib_install.log

� Creates the destination directory if it does not already exist

� Copies the files using all the correct version checks and delayed copying methods if
necessary

� Creates the required registry entries

� Increments UseCount entries in the Registry for shared files

� Installs the Guardian and Server as services on Windows NT, or adds the Guardian to the
Run section of the registry on Windows 95

� If necessary, adds gds_db to the Services file

� Streams the selected options into ib_uninst.nnn (where nnn is a sequence number) for use
at uninstall time

� Frees the options list from memory

� Upon completion, moves ib_install.log to the install directory

� Calls fp_status() at regular intervals to pass information on the install progress (percent
complete)

� Attempts to clean up if at any point in the install is canceled by the user or by an error

If you choose to write functions for displaying status and handling errors, you pass in
pointers to these functions as the fp_status and fp_error parameters. In addition, you can
pass context information or data to these functions by passing in values for status_arg
and error_arg, although these last two parameters are more commonly NULL. See page
34 for more about these callback functions.

Example To come after beta@@

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

Call isc_install_get_message() to obtain the error message when the result is nonzero.

THE INSTALL API FUNCTIONS

DEVELOPER’S GUIDE 43

isc_install_get_info()

Syntax MSG_NO isc_install_get_info(OPT option, int info_type, void *info_buf,

unsigned int buf_len)

Description isc_install_get_info() returns the information requested by info_type into info_buf
location. The info_buf and buf_len parameters cannot be NULL.

Parameter Type Description

info_type int Specifies the type of information requested; can be any one of the
following values

isc_install_info_destination
(value = 1)

• Returns a suggested destination
• Ignores any value passed for option

isc_install_info_opspace
(value = 2)

• Returns the disk space required to
install a particular option

• Requires a valid value for option

isc_install_info_opname
(value = 3)

• Returns a human-readable option
name for the specified option

• Requires a valid value for option

isc_install_info_opdescription
(value = 4)

• Returns a human-readable
description for the specified option

• Requires a valid value for option

option OPT • The option for which information is requested if info_type is 2
through 4

• Returns an error if option is not one of the valid types listed under
isc_install_set_option(), page 47

info_buf void* • isc_install_get_info() writes the requested information to this buffer
• Returns an error if info_buf is NULL

• If disk space information is requested, the result is an unsigned long

buf_len unsigned int • The length in bytes of info_buf
• Returns an error if buf_len is NULL

• Value should be al least ISC_INSTALL_MAX_MESSAGE_LEN bytes
• If a destination suggestion is requested, the recommended buffer size

is ISC_INSTALL_MAX_PATH

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

44 INTERBASE 6

Example To come after beta@@

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

Call isc_install_get_message() to obtain the error message when the result is nonzero.

The contents of info_buf are undetermined if isc_install_get_message() returns anything
other than zero, so the caller should always check the return from this function.

isc_install_get_message()

Syntax MSG_NO isc_install_get message(MSG_NO msg_no, TEXT *msg, int msg_len)

Description isc_install_get_message() converts the error or warning value stored in msg_no and
returns the corresponding message text to the programmer.

Example To come after beta@@

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

Call isc_install_get_message() to obtain the error message when the result is nonzero.

Parameter Type Description

msg_no MSG_NO • Message number for which text is requested
• This is the return from all the Install API functions

msg TEXT* • A pointer to the buffer in which the message will be
returned

• The message is always null-terminated

msg_len int • The length of msg in bytes
• Value should be al least ISC_INSTALL_MAX_MESSAGE_LEN bytes

THE INSTALL API FUNCTIONS

DEVELOPER’S GUIDE 45

isc_install_load_external_text()

Syntax MSG_NO isc_install_load_external_text(TEXT *external_path)

Description isc_install_load_external_text() loads the message file from the named path. This file
contains the text of the install error and warning messages as well as option names and
descriptions, and action text, description, and status messages.

If you are using English-language messages, there is no need to call this function. For
messages in other languages, you can purchase translations from some InterBase VARs
and use this function to load them. You must initialize this buffer with the path and
filename to use.

Example To come after beta@@

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

isc_install_precheck()

Syntax MSG_NO isc_install_precheck(OPTIONS_HANDLE handle, TEXT *source_path,

TEXT *dest_path)

Parameter Type Description

external_path TEXT* A pointer to a buffer that contains the full path and filename of
a file containing error and warning messages in a language
other than English

Parameter Type Description

handle OPTIONS_HANDLE • The handle to the list of options created by isc_install_set_option()
• isc_install_precheck() returns an error if the value of handle is NULL

or zero

source_path TEXT* • The path where the files to be installed are located, typically located
on a CDROM

• Can be NULL

dest_path TEXT* • The path to the desired install location
• Can be NULL

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

46 INTERBASE 6

Description isc_install_precheck() performs the following checks to ensure that installation is
possible:

� Checks for a valid operating system. These are currently Windows 95, Windows 98, and
Windows NT 4.

� Checks that a Classic server is not present. The InterBase server (SuperServer) is a
multithreaded architecture and cannot coexist with the Classic server.

� Checks that source_path exists and is a directory readable by the user. No check is
performed if source_path is NULL or an empty string.

� Checks that dest_path is a directory writable by the user or that the directory can be
created and that the drive contains enough space to install the selected components. No
check is performed if dest_path is NULL or an empty string.

� If the IB_SERVER option is specified, checks whether any existing newer or older version
of the SuperServer is already running.

� On NT, if the IB_SERVER option is specified, checks that the user performing the install has
administrative privileges.

� Checks the dependencies of the options required. The dependencies between the options
are as follows:

isc_install_precheck() returns an error if any of the checks besides option dependencies
fails. It returns a warning if necessary options have not been specified.

Example To come after beta@@

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

Call isc_install_get_message() to obtain the error message when the result is nonzero.

If any of these are specified These must also be installed

IB_CMD_TOOLS, IB_GUI_TOOLS, IB_DEV, and IB_ODBC IB_CLIENT

IB_EXAMPLES IB_SERVER, IB_CLIENT, and IB_DEV

IB_EXAMPLE_API IB_CLIENT and IB_DEV

IB_EXAMPLE_DB IB_SERVER

THE INSTALL API FUNCTIONS

DEVELOPER’S GUIDE 47

isc_install_set_option()

Syntax MSG_NO isc_install_set_option(OPTIONS_HANDLE *phandle,

OPT option)

Parameter Type Description

phandle OPTIONS_HANDLE* • Pointer to the handle of the list of options for the current install
• You must initialize this to zero before first use
• Handle is maintained by the install engine; you do not need to and

should not dereference it

option OPT option can be any one of the following values:

INTERBASE • Installs all interbase components and their related
files; same as specifying IB_SERVER, IB_CLIENT,
IB_CMD_TOOLS, IB_GUI_TOOLS, IB_DOC, IB_EXAMPLES,
and IB_DEV

IB_SERVER • Installs the Server component of InterBase: the
server, the license file if present, the message file,
the Guardian, the server configuration tool, gstat,
gds_lock_print/iblockpr, the UDF library, the
international character set library, and the help files

• Makes all necessary additions to the registry
• Creates the InterBase service on NT
• On NT, modifies the Services file, if necessary, to add

the gds_db service

IB_CLIENT • Installs the Client component of InterBase: the
client library, the license file, and the message file

• Makes all necessary additions to the registry
(Windows only)

• On NT, modifies the Services file, if necessary, to add
the gds_db service

IB_CMD_TOOLS • Installs all the command line tools for InterBase on
Windows platforms: gbak, gfix, gsec, gstat, iblockpr,
and isql

• Issues a warning if the IB_CLIENT option has not been
specified

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

48 INTERBASE 6

Description isc_install_set_option() creates and maintains a handle to a list of requested option
values. You must call ib_install_set_option() once for each option to be installed. In an
interactive install, the function would typically be invoked by a mouse click in a check
box.

You must initialize handle to zero before calling isc_install_set_option() for the first time.

Example To come after beta@@

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

Call isc_install_get_message() to obtain the error message when the result is nonzero.

IB_GUI_TOOLS • Installs all the InterBase GUI tools and their related
help files

• Issues a warning if the IB_CLIENT option has not
been specified

IB_DOC • Installs the InterBase documentation in Adobe
Acrobat PDF form

IB_EXAMPLES • Installs all the InterBase examples; has the same
effect as specifying IB_EXAMPLE_API and
IB_EXAMPLE_DB

• Issues a warning if the IB_SERVER, IB_CLIENT, and
IB_DEV options have not been specified

IB_EXAMPLE_API • Installs all API, SQL, DSQL, and ESQL example files
• Issues a warning if the IB_CLIENT and the IB_DEV

options have not been specified

IB_EXAMPLE_DB • Installs all example databases
• Issues a warning if the IB_SERVER option has not

been specified

IB_DEV • Installs the development tools and files for
InterBase: gpre, the import libraries, and the
header files

IB_ODBC • Installs the ODBC driver and the ODBC 3.0 driver
manager

Parameter Type Description

THE INSTALL API FUNCTIONS

DEVELOPER’S GUIDE 49

isc_install_unset_option()

Syntax MSG_NO isc_install_unset_option(OPTIONS_HANDLE *phandle, OPT option)

Description isc_install_unset_option() removes the option specified by option from the list
maintained by handle. You must call this function once for each option to be removed.
If handle is zero when this function is called, the function generates a warning.

Example To come after beta@@

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

Call isc_install_get_message() to obtain the error message when the result is nonzero.

Parameter Type Description

phandle OPTIONS_HANDLE • Pointer to the handle of the list of options for the current install
• You must initialize this to zero before first use
• Handle is maintained by the install engine; you do not need to and

should not dereference it

option OPT • option can be any of the values listed for isc_install_set_option()
• If option is the only member of the list, sets handle to zero

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

50 INTERBASE 6

isc_uninstall_execute

Syntax MSG_NO isc_uninstall_execute(TEXT *uninstall_file_name,

FP_STATUS *fpstatus, void *status_arg, FP_ERROR *fp_error,

void *error_arg)

Description isc_uninstall_execute() performs the actual uninstall, including the following steps:

� Calls isc_uninstall_precheck() to ensure that the uninstall can be performed.

� Decrements UseCount entries in the Registry for shared files and remove any files that
have a reference count less than one, except for files that have a value of zero preassigned
by Microsoft, such as msvcrt.dll.

� Removes all InterBase files named in ib_uninst.nnn except for isc4.gdb, isc4.gbk, and
ib_license.dat.

� Removes all registry entries in ib_uninst.nnn.

� On Windows NT, uninstalls the Guardian and Server services. On Windows 95/98,
removes the Run registry entries for them.

� Calls fp_status() at regular intervals to keep caller informed of uninstall status.

� Cleans up if uninstall is cancelled by the user if by an error.

Example To come after beta@@

Parameter Type Description

uninstall_file_name TEXT* • The name of the file containing the options that were installed
• Cannot be NULL

fp_status FP_STATUS* • A pointer to a callback function that accepts an integer from 0 to
100; see page 34 for more information

• May be NULL if no status information is required by the end user

status_arg void* • User-defined data to be passed to fp_status()
• Value is often NULL

fp_error FP_ERROR* • A pointer to a callback function that accepts an error number and
returns a mnemonic specifying whether isc_install_execute()
should abort, continue, or retry

error_arg void* • User-defined data to be passed to fp_error()
• Value is often NULL

THE INSTALL API FUNCTIONS

DEVELOPER’S GUIDE 51

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

Call isc_install_get_message() to obtain the error message when the result is nonzero.

isc_uninstall_precheck()

Syntax MSG_NO isc_uninstall_precheck(TEXT *uninstall_file_name)

Description isc_uninstall_precheck() performs several checks to determine that an uninstall is
possible. It checks that:

� The operating system is valid: Windows NT4, 98, or 95

� The uninstall file (ib_uninst.nnn) is valid and contains the streamed list of options.

� The server, if installed, is not running.

� The user performing the uninstall is a member of either the administrator or poweruser
groups when the platform is Windows NT; no equivalent check is performed on Windows
95/98.

Example To come after beta@@

Return Value Returns zero if the function executes successfully, a positive number if an error occurs,
and a negative number if the function completes with warnings.

Call isc_install_get_message() to obtain the error message when the result is nonzero.

Call isc_install_get_message() to obtain the text of an error message or warning when
the result of one of the Install API functions is nonzero.

Parameter Type Description

uninstall_file_name TEXT* • A pointer to the name of the uninstall file that was created
by isc_install_execute()

• Cannot be NULL

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

52 INTERBASE 6

Using the License API
The InterBase server functionality must be activated by installing authorization codes
that are provided on software activation certificates obtained from InterBase. Each
authorization code consists of a Certificate ID and Certificate key. You can activate the
server as part of your install by using functions provided in the InterBase License API. If
you do not activate the server as part of the install, it will be inactive until the end user
provides authorization codes using IBConsole.

The InterBase License API (iblicense.dll) provides five functions that allow you to check,
add, remove, and view certificate ID and key pairs (authorization codes). The fifth
function retrieves and displays messages associated with the return values from the other
four functions.

Loading the License API
You cannot statically load iblicense.dll during an install process. Use the Windows
LoadLibrary() API call or other language-specific equivalent to load it dynamically when
you need it and free the library immediately after use.

Typically, you would load the License API at the beginning of an install in order to check
that your desired certificate ID/key pairs can indeed be added. Call isc_license_check()
and then free the library. Later, when you have completed the install portion and are
ready to add authorization codes, load iblicense.dll again and add the authentication codes.
This sequence avoids the case in which an install is completed and then must be
uninstalled because the authentication codes cannot be added for some reason.

Preparing the ib_license.dat file
The authorization codes are stored in the ib_license.dat file in the InterBase root directory.
This file contains authorization codes from previous installs, which will still be functional
with the current install. Each additional authorization code adds further functionality to
the server. There is also an ib_license.dat file on the InterBase CD-ROM, which contains the
client activation code for the current client version. After completing your install, follow
these steps to ensure that you are using the most recent client authorization and that no
prior authorization codes are lost:

� Check for the existence of ib_license.dat in the InterBase install directory.

� If the file is found, concatenate it with the ib_license.dat that is on the CD-ROM to add the
current client capability.

USING THE LICENSE API

DEVELOPER’S GUIDE 53

� If the file is not found, copy ib_license.dat from the CD-ROM to the InterBase install
directory.

These steps ensure that you have retained any existing licensed server functionality while
providing functionality for the latest client.

The capabilities activated on the server are the union of the capabilities activated by each
line

Adding server functionality
There are five functions available for adding and removing authorization codes in
ib_license.dll:

� isc_license_add() adds a line to ib_license.dat. Use only authorization codes that you have
been given expressly as deployment codes from Inprise Corp.

� isc_license_check() checks to see whether an authorization code could be added to
ib_license.dat. This function performs all the same tasks as isc_license_add(), without
actually modifying ib_license.dat.

� isc_license_remove() removes a line from ib_license.dat.

� isc_license_display() displays the authorization codes that are currently in ib_license.dat.

� isc_license_get_msg() returns the text of error messages that correspond to error codes
returned by the other four licensing functions.

isc_license_add()

Syntax int isc_license_add(char *cert_id, char *cert_key)

Parameter Type Description

cert_id char* Pointer to a NULL-terminated character buffer containing the
certificate ID to be added

cert_key char* Pointer to a NULL-terminated character buffer containing the
certificate key to be added

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

54 INTERBASE 6

Description Adds a line containing the specified certificate ID and key pair to the ib_license.dat file in
the InterBase install directory. This ID/key pair must be a valid authorization code
obtained from Inprise sales. InterBase typically requires several authorization codes to
run and you must call the function once for ID/key pair you need to add.

Example To come after beta@@

Return Value isc_license_add() returns isc_license_msg_restart if it successfully adds the
authorization code. If it returns an error, pass the return value to isc_license_get_msg()
to obtain the exact error message. The possible return values are:

isc_license_check()

Syntax int isc_license_check(char *cert_id, char *cert_key)

Description Checks whether the specified ID/key pair is valid and could be added to iblicense.dat.
Calling this function

Example To come after beta@@

Return Description

isc_license_msg_restart Authorization code was successfully added

isc_license_msg_writefailed The authorization code could not be written

isc_license_msg_dupid The authorization code was not added to the
license file because it is a duplicate of one already
present in the file

isc_license_msg_convertfailed The ID/key combination is invalid

TABLE 6.4 Error codes from isc_license_add()

Parameter Type Description

cert_id char* Pointer to a NULL-terminated character buffer containing the
certificate ID to be checked

cert_key char* Pointer to a NULL-terminated character buffer containing the
certificate key to be checked

USING THE LICENSE API

DEVELOPER’S GUIDE 55

Return Value isc_license_check() returns isc_license_success if it determines that the authorization
code could be added. If it returns an error, pass the return value to
isc_license_get_msg() to obtain the exact error message. The possible return values are:

isc_license_remove()

Syntax int isc_license_remove(char *cert_key)

Description Removes the line specified by cert_key from ib_license.dat.

Example To come after beta@@

Return Value isc_license_remove() has the following return values:

Return Description

isc_license_success Authorization code could be successfully added

isc_license_msg_dupid The authorization code was not added to the
license file because it is a duplicate of one already
present in the file

isc_license_msg_convertfailed The ID/key combination is invalid

TABLE 6.5 Error codes from isc_license_check()

Parameter Type Description

cert_key char* Pointer to a NULL-terminated character buffer containing the
certificate key to be added

Return Description

isc_license_msg_restart Authorization code was successfully removed

isc_license_msg_notremoved The authorization code could not be removed; possible reasons are:

• The key specified by cert_key does not exist in ib_license.dat
• cert_key identifies an evaluation license

TABLE 6.6 Returns codes from isc_license_remove()

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

56 INTERBASE 6

isc_license_display()

Syntax unsigned short isc_license_display(char *buf, unsigned short buf_len)

Description Places all certificate ID/key pairs that are currently in iblicense.dat into buf, separated by
commas and NULL-terminated.

Example To come after beta@@

Return Value Returns zero if it succeeds. Otherwise, it returns the length that buf must have in order
to contain the message text, and buf itself contains NULL.

isc_license_get_msg()

Syntax unsigned short isc_get_msg(short msg_no, char *msg,

unsigned short msg_len)

Parameter Type Description

buf char* • A character buffer for the result
• Must be allocated by the programmer
• isc_license_get_message() returns an error if buf is not long enough
• Must be NULL-terminated

buf_len short • Length of buf

Parameter Type Description

msg_no short A message number returned by one of the other isc_license_*()
functions

msg char* • A character buffer for the message that corresponds to msg_no
• Must be allocated by the programmer
• Recommended length is 256 bytes

msg_len short The length of msg

PSEUDOCODE FOR A TYPICAL INSTALL

DEVELOPER’S GUIDE 57

Description When passed an error code from one of the other four functions in the License API,
isc_license_get_msg() returns the text of the corresponding error message in the msg
buffer.

Example To come after beta@@

Return Value isc_license_get_msg() returns zero if it succeeds. Otherwise, it returns the length that
msg must have in order to contains the message text.

Pseudocode for a typical install
The following code indicates the steps you would typically take in writing an install. Calls
to functions in the Install API and related specific code are in bold.

begin

OPTIONS_HANDLE handle;

boolean done = false;

LANG_TYPE language;

/* Get user preference if desired. This is if you created translated

* ibinstall.msg files in different directories */

language = get_language_choice();

if (language <> english)

isc_install_load_external_text(lang_dirs[language]);

/* For an interactive install, check that OS is valid and Classic server

* is not present before querying users for destination and options */

handle=0L;

isc_install_set_option(&handle, INTERBASE);

isc_install_precheck(handle, NULL, NULL);

isc_install_clear_options(&handle);

/* Query install for all the possible option names */

while(not all options)

begin

isc_install_get_info(isc_install_info_opname, option, opname buffer,

ISC_INSTALL_MAX_MESSAGE_LEN);

isc_install_get_info(isc_install_info_opdescription, option,

opdesc buffer, ISC_INSTALL_MAX_MESSAGE_LEN);

CHAPTER 6 USING THE INSTALL AND LICENSING APIS

58 INTERBASE 6

isc_install_get_info(isc_install_info_opspace, option, opspace buffer,

sizeof(unsigned long));

end;

/* Get a suggested destination directory */

isc_install_get_info(isc_install_info_destination, 0, dest_buffer,

ISC_INSTALL_MAX_PATH);

/* Present the user his choices and interact with them */

interact_with_user();

/* Use isc_install_set_option() and isc_install_unset_option() when

* interacting with the user or after the user clicks the Install button.

* Zero the handle before first call to isc_install_set_option(). /*

while (not all options)

begin

if(option is selected)

isc_install_set_option(&handle, option); /* Check for errors.*/

end;

/* You can check source_dir and dest_dir. */

error = isc_install_precheck(handle, source_path, dest_path)

if (error > isc_install_success) then

begin

/* If a classic server is installed, or any server is running

* then give error and exit */

isc_install_get_message(error, message, length(message))

user_choice = display(message);

do_user_choice() /* Terminate, return to options selection screen */

end

else

if (error < isc_install_success) then

begin

PSEUDOCODE FOR A TYPICAL INSTALL

DEVELOPER’S GUIDE 59

/* Some warning has occured, display it and continue */

isc_install_get_message(error, message, length(message))

display(message)

end

display_file(install.txt)

display_file(license.txt)

/* You are recommended but not required to supply callback functions

* because install aborts on any error. Some of the errors can be ignored.

* Some problems can be fixed by hand after the install. If you do not

* use callbacks you will not be able to inform the user of the status. /*

error = isc_install_execute(&handle, source_path, dest_path, NULL, NULL,

NULL, NULL, NULL)

if (error < 0) then

begin

isc_install_get_message(error, message, length(message))

display(message)

exit()

end

else

if (error > 0) then

begin

isc_install_get_message(error, message, length(message))

display(message)

end

display_file(readme.txt)

/* Clear options. not doing so results in memory leaks. */

isc_install_clear_options(&handle)

display_done()

end

